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This manual corresponds to the March, 1978, version
of Ptolemy. Many important additions and improvements
have been made to Ptolemy since the previously-documented
version of February 1976. An indication of this is that
the 1list of keywords has ©been expanded by thirty.
Collective-model inelastic excitation has been added.
The computation of the transfer DWBA amplitudes has been
significantly improved by the use of interpolation in the

Ri+Ro variable. Elastic scattering and reactions
involving identical particles may now be ~computed.
Simultaneous optical model fits to several different
elastic channels are possible. Significant changes to
this manual are marked with a vertical bar (|) in the
left margin and should be carefully reviewed. In addi-

tion the contents of the manual have been extensively
re-ordered.

Ptolemy is still under development and it may be
expected that some of the specifications given 1in this
manual will change from time to time without warmning.
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ABSTRACT

Ptolemy is an IBM/360 program for the
computation of nuclear elastic and direct-
reaction cross sections. It carries out opti-
cal-model fits to elastic-scattering data at
one or more energies and for one or more combi-
nations of projectile and target, collective
model DWRA calculations of excitation proc-
esses, and finite-range DWBA calculations of
nucleon-transfer reactions. It 1is fast and
does not require large amounts of core. The
input is exceptionally flexable and easy to
use. This report outlines the types of calcu-
lations that Ptolemy can carry out, summarizes
the formulas used, and gives a detailed
descripton of its input.
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I - Introduction

Ptolemy is a program for fitting optical-model potentials to
elastic scattering data, and for the computation of the Distorted
Wave Born Approximation to nuclear direct-reaction amplitudes.
Either the collective-model DWBA for inelastic excitation or the
finite-range DWBA for transfer reactions may be computed. No use
is made of approximations that rely on the short range of nuclear
interactions (e.g. zero-range and no-recoil approximations).
Ptolemy is specifically designed for heavy ion reactions but is
nonetheless very efficient for light jon reactions. Advantages of
Ptolemy over other DWBA codes include high speed, low core require-
ments, and ease of use.

Ptolemy derives its speed and compactness from several design
features:

1) Substantial effort has been put into the development of
the subroutine that picks the three-dimensional integration grid
that is used in the DWBA transfer calculations. This subroutine
makes use of the bound state form factor and the properties of the
scattering wavefunctions. This efficiently chosen integration grid
results in the need for relatively small numbers of integration
points; as an example, a grid consisting of 24 X 10 X 10 points
will give accuracies of 1 or 2 percent for many heavy-ion reactions
at moderate energies.

2) In high-energy heavy-ion DWBA transfer calculations, the
scattering waves oscillate rapidly while the form factor varies
slowly. However the computation of the form factor is the most
time consuming aspect of the calculation. Therefore the form
factor is computed on a coarse grid and interpolated to the finer
grid needed for the integrals involving the scattering waves. This
interpolation results in a reduction in the total computer time by
a factor of two to five in typical heavy-ion calculations.

3) 1Interpolation and extrapolation in L-space is used to
reduce the number of radial integrals that must be computed.
Interpolation is achieved by fitting a continued fraction to the
computed values, wkile the exponential form of the radial integrals
for large L is used for extrapolation. For Oxygen on Lead reac-
tions, a time savings of 80% is realized by this method.

4) The two inner loops of the radial integral computation for
transfer reactions have been coded in assembly language that is
specifically designed for the special features of the 370/195.
These loops function some three times faster than the equivalent
Fortran-generated code.

St = THe calculation of the angular transforms in transfer
reactions has been implemented using cosines instead of spherical
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harmonics. Thi I ids th ical cancellations
onics This approach avoids the large numer nethods

that occur in the more conventional Legendre decomposition

if the exchanged orbital angular momentum is relativly large- A
specially designed in-line cosine routine and iterative evaluatlons
of cosines are used to reduce the cosine computation time.

6) The Coulomb terms of the inelastic excitation émPlltUdeS
are computed using recursion relations in L. The starting values
for the recursion relations are generated using Belling's asymp-
totic expansion for integrals of Coulomb wavefunctions ard POWers
of r. A new asymptotic expansion of Coulomb wavefunctions for
large argument is used in these calculations. The result gf tpese
techniques is a high speed program for the Coulomb excitation 1n
which it is not necessary to be concerned with either orbital

angular momentum OL radial cut-offs.

7) The optical-model potential fitting part of Ptolemy uses
state-of-the-art minimization routines that make specific use of
the sum of squares property of the function (chi-squared) being
pminimized. The gradients required by these minimizers are comaputed

analytically.

8) The computation of the transfer amplitudes has been
factored into segments in such a way that the recomputation of the
came quantities is held to a reasonable (although not absolute)
pinimum without the need for extremely large tables. Scratch files
are not used in any part of tbe progran.

9) Ptolemy has been overlaid to about 18% of its unoverlaid
size. Nonetheless, overlay thrashing is not excessive and is inde-
pendent of the size of the calculation. The overlay processing
adds an estimated three seconds to a complete calculation.

10) All arrays used in a Ptolemy calculation are stored in a
section of core referred to as the allocator. This allocator is
obtained at the start of the job from the available core in the
region specified on the user's JOE card. Space in the allocator is
reused when the data contained in it is no longer needed. Since
the allocator size can change from job to job, small calculations
may be carried out in small regions while larger calculations are
possible without tle recompilation of any part of Ptolemy.

The result of these and other features is a very fast progran
for the finite-range DWBA. The 208ph(160,15N)209Bi (7/2~) reaction
including both L transfers at 104 MeV requires only 17 seconds (on
the IBM 370/195) and 220K of core. Further time savings may be
realized by storing the form factor integrals in a dataset for use
in subsequent calculations with different optical potentials. Most
inelastic excitation calculations require less than one minute of

370/195 cpu time.

In addition to its great speed, Ptolemy provides the user with
an especially simple form of input. The input is designed to pe
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flexible, tolerant of minor syntactical variations, concise and
easy to remember. Extensive checking of the input is carried out
in an effort to allow the same problem to be stated in a variety of
ways and to eliminate the chance of calculations being made with
undefined or otherwise unexpected parameters. Iun the following
sections it will become evident that many quantities may ke defined
in more than one way. Often there will be the possibility of a
direct specification of a parameter that can also be determined by
Ptolemy from other input. In most cases if the user explicitly
specifies the value, Ptolemy will not use the indirectly specified
value nor will it check the two values for consistency. Therefore
one should avoid needless duplication of input so that inadvertant
inconsistencies do not occur. An example would be the specifica-
tion of Q after the bound state calculations — the new value of Q
would be used in determining the outgoing state scattering energy
even though it might Le inconsistent with the difference of the
tound state energies. (In this case a warning message would be
printed.)

Provision is made for keeping final results (radial integrals,
elastic S-matrix elements, differential cross sectiomns, etc.) in a
form suitable for subsequent processing with Speakeasy*. This is
particulary useful for the production of graphs showing the results
of one or more DWBA calculations. In addition one may use the
extensive facilities of Speakeasy to manipulate cross sections or
radial integrals interactively.

In addition to the computation of DWBA Cross sections, Ptolemy
can also be used to fit optical potentials to elastic scattering
data. The specification of the parameters to be varied is both
simple and flexable; the user does not need to write a subroutine
for each fit to be made. The method of entering data is quite
general; if the user's data is already punched on cards for a
different fitter, he will probably not need to repunch it for
Ptolemy. Fits to data at several energies may be made, and several
keywords are provided to give the optical potential a dependance on
the scattering energy. The user is given a choice of six different
pminimum-search programs including four that use analytically
computed gradients. Two of the latter fitters work exceptionally
well and 12-parameter fits to 160+208ph data at five different
energies may be made in less than a minute of /195 time.

In the next section we present the formulas used in Ptolenmy.
The syntax used in Ptolemy's input is described in Sec. ILL.  Sech
IV describes elastic-scattering and bound-state calculations and
contains basic material (such as potential definitions) that is
used in the subsequent sections. The next three sections (V, VI,
and VII) discuss optical model fits, inelastic excitation, and

+ 5. Cohen and S. C. Pieper, "The Speakeasy-3 Reference Manual,"
Argonne National Laboratory Report ANL-8000 (1977).
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transfer reactions respectively. These three sections are largely
independant of each other; where necessary cross references are
made. Section VIII presents some of the control keywords that
perform functions auxilary to the calculatiornal functions.
Appendix A contains a complete list of Ptolemy keywords and their
default values. Appendix B provides core and run time estimates.
Appendix C shows the JCL needed to use Ptolemy and Appendix D
contains the complete input decks for some sample jobs.

This manual does not enumerate all possible variants and
interpretations of the Ptolemy input; rdtlier 1t 15 limited to the
most straight forward methods of stating the problem to be solved.
For many DWBA calculations and optical-model fits, the necessary
input can be inferred directly from the examples given in Appendix
D, to which the tyro is referred. The only aspect of the input
that is not clear upon inspection of these examples is the use of
the PARAMETERSET keyword which is discussed on page 40.



II - Summary of Formulas

This chapter contains a summary of the formulas used in Ptolemy

for evaluating elastic, inelastic and transfer cross sections. Since all of

the formulas are standard, no attempt is made to present deriviations.

A - Two-body Channels

We will consider two particles (nuclei) referred to as the "projectile"

(subscript p) and the "target' (subscript t). For scattering states these
designations will have their customary meanings, while for bound states the only

distinction is that the spin of the projectile determines the spin-orbit force.

The reduced mass is
M Mt
M = _P-——Mp+Mt M (II1.1)

where Mp and Mt are the atomic weights of the two nuclei and M is the atomic

mass unit [Eq. (II.100)].

1. Bound States

The Schrédinger equation for bound states may be written as

el dt 2 s BORHLD ey AM 2 e
[ ol e R + > + > V(r) + k= 1 ¢(x) =0, (11.2)
E r h
k= V-2ME /h (11.3)

and E is the (negative) energy of the bound state. For large r, ¢(r) tends to

a Whittaker function:

(IT.4)

p(x) — T W (Zcr)

Jemas

-nN, Q/+1/2

where N is a normalization constant and n is the Sommerfeld parameter for the

bound state:

n = Zp z oM c/ (h k) (T1.5)

The relevant combinationsof the fine-structure constant o, the speed

of light c, and the Planck constant h are given in Egs. (IL1.99) = (IT1.101). The
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bound-state wave function is real and normalized such that

o]

R e (I1.6)
(o]

2 ’
The sign of ¢(r) follows the conventions of Meyer and Jensen’, namely ¢(r) is

positive for small r.

2. Scattering States

The Schrddinger equation for scattering states is written as

1 L 5+ 2(§+1) piaZ ? W) e aet] L (Tis7
dr r h

where the wave number is

k=VvV2ME /h (I1.8)

with E the center-of-mass scattering energy. If the potential contains a spin-
orbit component, the fg should also contain a label for the total projectile
angular momentum; we will for the moment suppress this label. The scattering

wavefunctions are normalized such that

£, (r) — (1 + SQ)FQ(n,kr) T (1-SQ)G2(n,kr)] ) (LL.9)

oo

where F2 and G2 are the regular and irregular Coulomb wavefunctions1 and n

is the Sommerfeld parameter:

= Zp Zt aMc/(h k), (I1.10)

p t 2 E 5 (IToLTY

The elastic scattering S-matrix element SQ is defined by Eq. (II.9).
If there are no spin-dependent forces and if the particles are not

identical, the elastic scattering cross section is given by

& - r @] . (11.12)

If the particles are identical, but there are no spin-dependent forces, the

cross section is
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2L 3onS G
%% = lFi(e)lz + 3;5%— [IF+(6)|2 - IF (8)[2] (11.13)

where the upper signs are for Bose statistics and the lower signs are for
Fermi statistics. Here Sp is the spin of the particles. Finally, for a spin-%
projectile interacting with a spinless target via a spin-orbit force, the

spin-averaged cross section is

do _ 2 2
= |F(e) |~ + |B(O)|T . (I1.14)

We do not consider more complicated systems with spin-dependent forces.
The amplitudes in the above equations are sums of Rutherford and

nuclear components,

F(8) = FR(B) + FN(G) , (II1.15)
2i[02—n1n sink6]
Fo(8)= _——”——2— e ) (11.16)
2k[sink6]
1 Zicl
FN(Q) = m Q/Zj (23+1) (SQ,J_I) e PQ,,O(COS B (11.17)
FE(e) = F(8) t F(m-0) (11.18)
and
1 Ziol
B(8) = ik i [SZ,Q+% - Sl,l-%] e Pz,l(cos 8) . (I1.19)

Here S is the spin of the projectile and the S-matrix elements have been labeled
with both % and j to allow for a spin-orbit interaction. If there is no spin-orbit

force, one has

1
2S5 +1
P

g SR R L (11.20)
j )

The Coulomb phase shifts are

& Arg T (241 +in) , (I1.21)
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and the conventions of Ref. 1 are used for the Legendre fumetions E, In

the Rutherford amplitude (II.16) an alternative f

b
orm is given by the replacement

Al (UL 22,
7k zp zZ, o h c/ (4E)
The total reaction cross sections are given by
2
B -—E—JL————- £ (24+H) (1-]5, j| ) (II.23)
S B s R B 2
P
for non-identical particles and by
2
e -75—i51———— {% r (22+1) (1’!Sz| )
= OB %
P
F oI (2H) (1"51'2)} (1I.24)
2 even
or odd

for identical particles. Here the second sum is over even partial waves for
Bose statistics and over odd partial waves for Fermi statistics.

One can define a "nuclear total cross section'

= 4w
Gs = 2 Im FN(O) (I1.25)

for non-identical particles, and

4

ONue 7 k(2 5,0

(2 5, In Fy(0) + Im Fy (0] (11.26)

for identical particles. If there is no Coulomb force, these quantities are

just the total cross sections:

o =0 (11.27)

+
Nuc el oReac

where g is the integral over angles of the elastic cross section. Schwarzschild

1
et. al.3 have discussed the significance of Nuc in the presence of a Coulomb

force; for heavy-ion scattering o is usually quite small.

Nuc
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B - Inelastic Excitation

We consider the inelastic excitation process

A(a,b) B (I1.28)
with either
b =a
*
for target excitation or
*
b=a
B=A (11.30)

for projectile excitation.

The outgoing kinetic energy in the c.m. system is

Eout = Ei + Q (11.31)

where Ei is the incoming c.m. energy and the Q value is given by

@ ="E, S E - E E, (11.32)
where the Ek are the total energies (in MeV) of the nuclear states involved:

Ea= (7 M FaN : + (M aF E* 11.33

o = @M+ MM e R M)y o % Ll
or

E 7z o E* II.34

e Eg (Z,,N,) K » (11.34)

Zk’ Nk are the numbers of nucleons in the nuclear state k, (ch)k is the ground-
state mass excess of the nucleus with Zk protons and Nk neutrons and E Kk is the
excitation energy if state k is excited. Eg(Zk,Nk) is the total ground-state

energy (or mass X cz) of the nucleus (Zk’ Nk)'

Ptolemy evaluates the inelastic cross sections in DWBA using collective-
model form factors for the nuclear part of the excitation. The distorted waves are
the solution of Eq. (II.7) with the normalization of Eq. (II.9). These distorted waves

must, of course, be separately evaluated in the incoming [a+A] and outgoing [b+B] channels.

1. Differential Cross Section

The differential cross section at a c.m. scattering angle 6 for the

excitation process is written as
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do 1 Kout Lo o
T . F B " Ry IGM (6)‘ > (L. 35)
i Tout al LM X
X X
where R is a spin-statistical factor:
2Jb + 1
R = Y T (projectile excitation),
a
ZJB + 1
= ——r (target excitation) . (I1.36)
2J, + 1
A
Here ki and kout are the wave numbers (Eq. II.8) in the incoming and outgoing
channels and Ja’ Jb’ JA and JB are the intrinsic angular momenta of the four

nuclei. The multipolarity of the transition is labeled by LX.
The multipole transition amplitude may be decomposed into a term

reflecting the amount of deformation and a geometric term:

L I
X

G el = BMX 8) . (11.37)
X X X

2. Geometrical Component and Effective Interactions

The "geometrical' component is

LX L Lout’LX’L'
BEX =/im1i¥* : c *
M M ,-M ,0
X L, L X X
i out
Lout
L Y, (€0, (II.38)
i’ out” X X
L Ly slipal
where YM(6,¢) is a spherical harmonic and CM MM is a Clebsch-Gordan coefficient,
3 2’

both defined according to Condon-Shortley conventions.

The radial integrals are given by

2 L +1 , L ,L. i(o.+o )
I A out IC out’> x> 1 3 i “out
Lot s ol 4 0, 0, 0
i° out” X
x [ £ @ H @ f (@ dr . (II.39)

o 1 X out
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The symbols o, and © o designate the Coulomb phase shifts OL (n ) and o, (nout)
respectively. The effective interaction H contains both nuclear and elecgrlc

Coulomb contributions:

= I.40
HL (r) HL ’N(r) + HL ’C(r) (II.40)
p:q X x
The nuclear component of the effective interaction is
i d V(x) 4
= - ' s T
HL ,N(r) = [R e + 1RI I Jes (I1.41)
X B
L
X

where V and VI are the real and imaginary parts of an optical potential. The

radii R' and Ri are the radii of the excited nucleus; specifically,

1/3
A '
R rO A 5
II.42
R! =r A'l/3 ( )
I I0 L]
where A' = A for target excitation, A' = a for projectile excitation. The

nuclear deformation parameter is BL so that R'BL and Ri BL are the deformation
- : ; X X
lengths. We have normalized the effective interaction to thé average of the

nuclear and Coulomb deformation parameters:

B. =% (B. + B b (II1.43)

The Coulomb part of the effective interaction is derived from the

multipole expansion of the potential between a point charge and a uniformly

charged sphere.
e Ly
B 2 —r r <R
iy, (@ 32 Z,e L +2 C i
) O Rt 24 R =
L ,C = C 2L +1 (]
X B X y
Lx—l
RC
) r > RC 3 (IT.44)
X
r
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where Z and ZA are the atomic numbers of the two nuclei. Note the distinction
a

between the Coulomb radius of the excited nucleus:

]./3 /
' = ' II. 5)

and the Coulomb radius of the optical potential:

R 1/3 | 413y | (I1.46)

c = Tco (@

The Coulomb deformation parameter BL C is related to the reduced transition

X,

rate B(E,LX,+) by

ZJf, l+l
B(E,L_,4) = 5o B(E,L_,%)
X 20 X
initial
+
37 R é = 2 (Zinnal 1)
= [4 10 B, ¢l * (23 +1) (2L_+1) (I1.47)
m x’ initial be

L
where B(E,Lx,f) is given in units of e barn % and Ré is in fm. The BL o
X’

o
defined can be related to a nuclear deformation only for O ground states; however
Ptolemy correctly computes the Coulomb excitation from other ground states if the

B(E,Lx,f) is given.

3. Strength of Effective Interaction

The strength constant in Eq. (II.37) is given by

A = EL / /ZLX+1 , (1I1.48)
X X
where EL is defined in Eq. (IL.43).
b:d
C - Transfer Reactions
Ptolemy computes amplitudes and cross sections of nucleon-transfer
reactions

A (a,b) B (I1.48)

using the full distorted-wave Born approximation4 (DWBA) , without further
approximations based on the short range of nuclear interactions. In the incoming
channel (A,a), A is the target and a is the projectile; in the outgoing channel
(B,b), B is the residual nucleus and b the ejectile. A, a, B, b will be used
both as identifiers of the nuclear states involved and as symbols for the total
numbers of nucleons. The group of nucleons transferred (or the number of

transferred nucleons) will be denoted by X.
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1. Possible Reactions

(i) If a > b, the reaction (II.49) is a stripping reaction.

a (b+x) b
\) >
S
X
S
N 2
/ Pl
A B (A+x)
a=b + x
(stripping)
B=A+x (II1.50)
(ii) If a < b, the reaction (II.49) is a pick-up reaction.
o b (a +x) "
> 2
7
X
=
A (B+x) B
b=a+x
(pick-up)
A=B+x (I1.51)

2. Two-Body States

Calculation of the transfer cross sections involves the combination of

four elements—the scattering wave functions in incoming (i) and outgoing (out)
channels and bound-state wave functions representing the composite nucleus at
each reaction vertex. The vertex involving A, B and x will be referred to as
the target vertex and the corresponding bound state as the target bound state;

the vertex involving a, b and x will be referred to as the projectile vertex and
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the corresponding bound state the projectile bound state.

The kinetic energies in the incoming and outgoing channels are
related by Egs. (I1.31)-(II.34) and the elastic scattering distorted waves for

these two channels are found using Egqs. (EL.7)-(1L.9): the radial variable in

these equations is the position vector of the mass center of a (or b) relative

to the mass center of A (or B). We will also need elastic scattering wave-

functions in incoming and outgoing channels,

T Lo 0a [
+ > - K 4 ol i i I1.52
X (ki’ ri) gy rif (ri) [Y (ri) Y (ki{] ; ( )
aiat b, 1
i
and
L L ~ L ~
- > > * 4 out out out
= — i .Y k . 1I.53
[x (kout’rout)] k T ool fL {% (rout) ( out{] ( )
out out LOut out

Consider next the interaction vertices.

(i) The Target Vertex: t = (z,C0)

H¢ Ct

Let Ct denote the core nucleus and Ht the composite (heavier) nucleus at the

target vertex

aQ
]

m
]

B (pick-up) A (pick-up)

B (stripping) . (11.54)

Il

A (stripping)

In either case vertex t is regarded as the break-up of the bound state Ht into

its constituents

Ht _— Ct 4y, (II1.55)
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The radial variable associated with this break-up is

=
=r
t Cix
t

ey
r

-
er(plck—up)

+ . 3
Trx (stripping) . (I1.56)

Introduce a complete set of states

ntzt N lt 2
o (r,) = ¢ (xr,) ¥  (z.) (1I1.57)
mt t ntzt t mt

describing the bound-state wave-function of x and Ct' Here ¢n2 is the bound-
state radial wavefunction defined in Eqs. (II.2 to II.4). Let the transferred
nucleons have intrinsic spin JX and internal quantum numbers x.+ The particles
emitted (or absorbed) at vertex t are described in terms of the functions
n_% J
[@ W <I>XJX(DX)] a1y (I1.58)
I
where ¢XJX represents the intrinsic structure of x.
The break-up of the internal wave function of Ht into Ct + x is to
be described in terms of shell-model wave functions. This is characterized

by a spectroscopic amplitude @(ntlt,xe, A Ht’Ct) defined below[Eqs. (II.96)

t;
and (II.97)]. The coupling schemes for the angular momenta at vertex t are
> > >
Qt + JX = Jt (1I1.59)
ey ¥ 0= TG (11.60)

Equation (II.50) defines the total angular momentum Jt transferred at vertex

t; Eq. (II.57) specifies how Jt is divided into orbital and intrinsic components.

(ii) Projectile Vertex: p = (X,Cpl

Hp Cp

+Also used for the number of transferred nucleons.
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As in the treatment of the target vertex, Cp denotes core, Hp composite

(heavier) nucleus.

ick- H b (pick-up)
P apde UP) P (II.61)

b (stripping) a (stripping).

a
]

Thus the vertex p describes the break-up of the bound state Hp into its

constituents

H —> C +x . (I1.62)

The radial variable is

H
]
-
]
[a]

T 5 (pick-up)
(II.63)

T (stripping)
r, . (stripping

The equations describing the state of the particles emitted (or absorbed)
at p are obvious analogs of Egs. (II.57) and (II.58). The equations analgous

e
to Eqs. (II.59) and (II.60) for the angular momentum Jp transferred at vertex

p are:
Ep -2 EX - 3p (11.64)
”J‘(cp) + Ep o (H)) (II.65)

3. Vector Transformation between Bound-State and Scattering Variables

Ignoring for the moment the internal structure of the nuclear states
Cp and Ct’ the transfer reactions under consideration are (x+2)-body processes—
the "bodies" are the two cores and the x transferred nucleons. Now let the
effective interaction that induces transfer be taken to be a function of the
bound-state variables gp’?t only; i.e., it is independent of the internal
coordinates Py of x, dependent only on the position of the mass center of the
%x transferred nucleons. The (x+2)-body process now becomes a 3-body process
(Cp, C, and x).

The natural variables for this 3-body problem are the position vectors
of Cp’ Ct and x relative to an origin fixed in space. In order to separate the
center-of-mass motion, introduce as independent variables the c.m. position
vector K and two (any two) of the relative variables ;i’ ;out’ ¥t’ ¥p' Ptolemy

S y . .
uses the scattering variables (ri,r t) as integration variables. The Jacobian
ou
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of the transformation

> - - > > ->
(R, » Ro s R) > (R, T e (I1.66)
t P
is
J = a3
H Ht (1I.67)
where o =
+
(Cp Ct+x)x

and is included in the expression (II.68) for the transformation function H.

> >
With T, T_ .. @S independent variables, angular-momentum functions of

> >
r ,r, must be expresied %n terms of ;., ? . This involves evaluation of
p’t ntmn i out
the coefficients H PP (r.,r ) of the vector transformation
5k L i’ out
i out x
‘ lt ; Qp b Lx
g () Vge b0 g (rp) g lr ) x5 (rp)
tt PP
Mx
LB oue ) et 1y s b L
_ B
z (=) HL,L L (ri’rout) Y (ri) x Y (rout) (I1.68)
.L I EUtENEe Mx
i out

of the bound-state product into spherical harmonics of the independent variables
_)

r.,? . Here V is the effective interaction that induces the transition.

i’ out eff

It will be defined below [Egs. (II.85) and (I1.86)]; all that is of consequence
here is that Veff depends only on the radial variables. H(ri,rout) is referred

to as the bound-state form factor. The strange phase factor in Eq. (II.68) is
introduced to give the phase of the radial integrals I, L [Eq.. CIL.95) ]
the following two desirableifgaigres)for large values of Lgugnde " [suppressing
i out ch

for the moment the factor e 1l

1) The phase does not change by 7 every time Li and LOut change
by unity.

2) For most reactions, the phase tends to 0 from above as both

L., and L increase.
al out
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4. Calculation of Bound-State Form Factor

The procedure for computation of the form factor H in Eq.

(11.68) is
5 : = o4 d in terms of
that of Balian and Brézin. First, T and rp must be expressed 1n

> -
r. and r
1 out

- >

e : s t) T,

s - (II1.69)
p ) t2 Tout i

To identify the constants s._, ti consider the plane triangle whose vertices
1

are the three basic particles Ct’ Cp and x.

Ht and Hp are at the mass centers of (Ct’ x) and (Cp’ x). The vectors ¥i and

?out have different identifications for pickup and stripping:

- - >
LiuGasal™ TH 0
t .

% N N 2 pick-up , (TL1.70)
Tout ~ "Bb - Tc.H

tp
-> - —
i T Taa T TcoH

P stripping . (1I1.71)

a2

out Bb H C J
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Pick-up Stripping

P P

Cc
Then with o defined by Eq. (IIL.67) and

Y= 3 e = (11.72)
P t
s t -y 1
1 1} = a (pick-up)
5 t2J SN
(1I1.73)
IESE
= a (stripping)
-1
The bound-state form factor is then given by
n 2 n %
tt ) L 1
HL.L (o rout) o f dx
i out x -1
. I11.74
XAlZ(QtlpLiLoutLX’x) g%n 2 [?t(xﬂ Veff ¢n 2 [rp(xﬂ:} ( )
tt PP
where
X = cos p = r.°r (IT.75)

and ro rp are functions of x through
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a 0y} 5 2 2 L
rt(X) = [S1 £ thE ST + ZSltlriroutx] :
(I1.76)
e ) 2 2 L
Ly T e 6 28,t5T T o)

The angular factor A12 in Eq. (IL.74) is:

1
(L AL -2) +1) (28 +1) (22 +1)17
A o(B 8 DL L sx)= --%(-) out ™1t [QLHL) (2L, 1) (2R, HEL,

t7p i out
b pilE Lt 2 s 2 B
P o 1k out
X z A W AM 3
m M m, - \ p, ) T x "
qum 2l 2 e 2 R
- = (11.77)
X cos [m¢t + (MX m)¢p el
where ( ) are 3j-symbols, ¢ is defined by Eq. (I1.75), and
r 9
AT L - B SIEET B Tous et
Py = e Tt* Tout Er
- - (I1.78)
IR O O [5273% * ©2%out
) o8 rp out r
- p -
In the above ¢ and c:os_l are between 0 and m and
S :
(-)" = -1 (pick-up) ,
= 41 (stripping) . (11.79)
Finally,
k : :
Aq = 0 if k*q is odd ,
L
k+ +q)! (k-g)!]17?
= (] 2q [ékki) (kk?) ] if ktq is even.
HESU ) (11.80)
5. DWBA Amplitude and Effective Interaction
The transfer amplitude in DWBA has the form
> ->
i
(ki A kout)
3 3 - * Tar 2
= v A,a> (k,,r.) .
J ff ¢ rid rout[>< (kout’rout)] <B’b| effI * abe At (I1.81)



1T Summary of Formulas 21

where <Ve > denotes a matrix element with respect to all internal core

ff
> >
coordinates; <Veff> is a function of r, and rp. The transition operator Ve

ff
is the part of the sum of two-body interactions between constituents of the
colliding species in either channel that is not contained in the optical
potential in that channel. According to Eqs. (II.70) and (II.71):
v =3 ) v, - (r ),
eff ieC jEHt ij opt ~C Ht
or (I1.82)
Vetr = ) .z L Ut m ’
ieC_ jeH P
t P
Two standard approximations are then made.
(i) The additional particles x have little influence on the core-core
optical potential. UOpt thus describes the core-core interaction.
I , (II.83)
Pt jec jec, M
P t
and thus
Vege = L L Vyy :
IECPJEX
or (11.84)
Vegr = L LV
lECtJEX

(ii) The sum of two-body interaction z z \Y
ieC jex

i3 is replaced by a one-
body potential V(¥Cx) depending only on the relative position of the mass center

of x to that of the core

eff G ox
or (I1.85)
v = vV (r,)

eff Ctx t
It is the second approximation that reduces x-nucleon transfer to a three-body
problem.
In the simplified form (II.85) Veff can be associated with one or the
other vertex. For the one-body potential VCx’ Ptolemy uses the potential

that binds the composite system H at the appropriate vertex.
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It is known that the approximation (1I1.83) is poor for the Coulomb

part of the interaction. In this case a simple correction can be made;

Veff

1

VC x(rp) + AV,

P

or (I1.86)

Veff = VCtX(rt) + AV

where

= - (11.87)
AV V(rcc) Vopt'

In Eq. (IL.87) V £ is the appropriate optical potential as indicated in the
op

following table:

Pick-up Stripping
Interaction at
(=) ¥ g diipnn o)
t  out
p Vertex opt ok
Interaction at
Vopt(rout) Vopt(r')
t Vertex

V(rcc) is the optical potential between the two cores and is evaluated using
the same potential parameters as vopt' With the Coulomb correction AV, Veff
becomes a function of rp, T, and x in a fashion which adds no essential compli-

cation to the integral in (II.74).

6. Angular Momenta

The angular momenta transferred at the vertices, Jt and Jp have been
defined in Egqs. (II1.60) and (I1.65). The total transferred angular momentum
LX is defined by

> -+ >
Lx + Jp = Jt (I1.88)

The multipole or angular-momentum decomposition of the DWBA amplitude and cross

section is based on the total angular-momentum transfer. .

7. Differential Cross Section

k L (J.J) 2
O @y =cad— MR ] I e EP (o) (11.89)
i out i J Jo LM X

tp X X

where R is a spin-statistical factor:
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2Jb+l
R = 2Ja+l (pick-up) 5
ZJB+1 (11.90)
= ijziT (stripping)

In Ptolemy only one value of Jt and Jp is allowed and the sum over Jt and
Jp in (II.89) consists of only one term.
The multipole transition amplitude G is a sum of products of spectro-

scopic and geometrical components

L (J.J)
x “tp
GM (8)
X
z Lx(Jth)
= (n. 2. n 2 ) B (n 2. n @B)l (1I1.91)
e n e ALXJth ttpp MX t'tpp

n
ttpp

summed over all contributing states of orbital motion of the transferred
nucleons at each vertex. Ptolemy allows only one projectile and target bound
state so the sum in (II.91) consists of only one term. With the phase convention

introduced earlier, G is the negative of the amplitude used in Ref. 4.

8. Geometrical Component (including radial integrals)

The angular dependence of the cross section is contained in the

"geometrical" component of (II.91):

LX(JtJ )

B P (gm0 =160

M PP

5t
s Lx‘HLt—Qp Lout’Lx’Li il
VT 5 Z C I (n g n g out

' MX,—MX,O LiLouth t t'p p)Y_M s (11.92)
i out X

The radial integrals are expressed in terms of the bound-state form factor H

[Egs. (II.74) to (II.80)] and the radial scattering functions by
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i(o, + O
I (n_%.n 8 ) = 5 + %out)
L.L L ttpp

i out x
n 2 n %
ttpp (11.93)
X f r ) .
VIR L TE N L N e out) fL Gout
i out X out
L

Note that BMX is independent of the shell-model wave functions of the nuclear

X

states.

9. Spectroscopic Factors and Spectroscopic Component

Let the states, A, a, B, b be represented by shell-model wave functions,

+ .
In order to treat the center-of-mass variable R consistently and to separate

internal and center—-of-mass variables of the nuclear states, use harmonic-

oscillator shell-model wave functions with the center—-of-mass motion in its

ground (0s) state.

Consider then the internal stat$sJat the target vertex. If Jt is the
total A.M. transfer at that vertex, let V¥ tMt be a complete set of x-nucleon
shell-model states for the transferred nuclegns, and let a (YtJtMt) be the
creation operators that produce these states from the vacuum. The x-nucleon
states must be projected onto states of the transferred nucleons of the form
(II.58), with internal and center-of-mass variables separated. Define the

necessary coefficients

KJt(ntQt X Jx;yt)

n % xJ J Y. J

= 3 3 £t > « 55 t¥ t t >
= [ SR (e 7 TE) x o Tl ) ¥ Ty ({r M (I1.94)

=
where {ra} is a set of nucleon coordinates and

R == ) T
Sk ’ Lo o (11.95)

I o~14

o

Then the conventional spectroscopic amplitude /S is given by

J ;
St b ,xJ T 3H ,C)

= Z K, (n poxd_5v,) <J(H y| |4t (v, J )||J(C )> (11.96)

t
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(The reduced matrix element is defined by the Wigner-Eckart theorem in the
S ke k.

m'qm ) O

The treatment of the centers of mass leading to Egs. (II.94) and

form <ijqu|j'm'> =C

(II.96) is exact if the shell-model wave functions and the radial functions

¢ in Eq. (II.57) and its projectile analog are harmonic-oscillator functions.
However, the radial functions of the target and projectile bound states are
eigenfunctions of Woods-Saxon potentials. This difficulty is usually ignored
since the level of precision of the entire analysis (in particular of its
absolute normalization) is seldom high enough to require consideration of such
niceties. A crude correction factor can be introduced by expanding the
Woods-Saxon wave functions in terms of oscillator functions and assuming that

one term dominates. It can then be shown that the replacement

%§(ntzt,xe,Jt;Htct) > O(ntlt,xe,Jt;HtCt)
. 2n +L (11.97)

n G
e(Htct) = (Ct) 2 /S(Htct)

should correct for the use of the oscillator shell-model wave functions. The
projectile vertex is handled in the same way.

In Ptolemy, the spectroscopic amplitudes O are read in directly; they
can often be inferred from suitable light-ion reactions between the nuclear
state in question. Note that S as defined above reduces to the standard
spectroscopic factor in the case of single-nucleon transfer.

The spectroscopic component A [Eq. (II.91)] is given in terms of

the spectroscopic amplitudes O [Eqs. (II.96) and (11.97)] by

JX—J +2 +2t
Al (n.2.n 2) = V2L +#1 § (=) B
g ESESpSDp X
X tp xJ
X
: : : I1.98
X w(ltJtlpJp,JXLX) G(ntlt,xe,Jt HtCt) C] (nplp,xJX,Jp HpCp) ( 98)

A is independent of the scattering angle and Mx'

10. Outline of Steps in a DWBA Computation for Transfer Reactions.

The main steps in a DWBA transfer reaction calculation can be
schematically summarized as follows. In practice a number of these steps are
carried out in parallel.

1) Adjust the potentials at the interaction vertices to reproduce the

experimental separation energies and compute the bound-state wave functions. This
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(IT.85) or (I1.86).

specifies the effective transition operator through Egs.
(11.7)-(11.9) for

2) For given optical-model parameters, solve Egs.

the radial scattering functions. At this stage elastic-scattering amplitudes

and cross sections can also be computed.

3) Use Eqs. (II.74) to (II.80) to compute the bound-state form

factors H(r.,r
( i’ out)

4) Fold the bound-state form factors with the r

(I1.93)] to obtain the radial integrals IL e
i out x°

te the spectroscopic

adial scattering

functions and integrate [Eq.

5) Using given spectroscopic amplitudes © compu
(I1.98).

components AL of the multipole amplitudes using EqL
of the multipole amplitudes

6) Calculate the geometrical components BM
X

using Eq. (II.92).

7) Construct the multipole components of the transition amplitude
using Eq. (II.91) and compute the cross section [Eq. (II.89)].

Note that in heavy-ion calculations, more than 90% of the time is

spent carrying out steps (3) and (4) —construction of the bound-state form

factors and integration over r, and Tout’

D - Constants and Units

Ptolemy uses the values:

hc = 197.32858 MeV fm (I1.99)

M = 931.5016 MeV/C2 (I1.100)
-1

o = 137.03604 (I1.101)

where M is the atomic mass unit and a is the fine-structure constant.

Ptolemy reads, stores and prints quantities in the following units:

Quantity Unit
angles degrees (input,output)

degrees or radians (internal)

cross sections mb
lengths, radii fm
-1
momenta fm
energies MeV
2
reduced mass MeV/c

nuclear masses amu
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potentials MeVL

2L
B(E,L ) e“b
wave functions:

-3/2
bound state (¢) fm
scattering (f, X) none

elastic amplitudes (F, B) fm
amplitudes (G, B) MeV fm
radial integrals (I) MeV fm
transfer form factors (H) MeV fm
inelastic effective interaction (H) MeV

Note that since cross sections are expressed in mb, a factor of 10 is necessary

in Egs. (II.12)-(II.14), (II.23)-(II.26), (I1.35), and (II.89) to convert from

fm™.
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III - Notation and Syntax

A - Notation

lower case letters cannot be conveniently used as computer
input. Thus some changes must be made to the notation established
in the previous section for the description of inelastic excitation
and transfer reactions. In general lower case letters will simply
be converted to upper case. However, in Sec. II a distinction was
pade between lower- and upper-case letters in the identification of
the reaction participants. For Ptolemy input this distinction will
be maintained by specifying the target particles as BIGA and BIGB
while the projectile particles will be A and B. Thus the reaction

computed by Ptolemy may be written as
BIGA (A, B)BIGB .

In the incoming state, the target is referred to as WBIGA" and the
projectile is "A". In the final state the residual target is
"BIGB" and the ejectile is "B". The exchanged particle is referred
to as "Xx". For a stripping reaction we have

A =B + X,
BIGB = BIGA + X,

while for a pickup reaction

B = A + X,
BIGA = BIGB + X.

Ptolemy will compute either pickup or stripping reactions; it is
not necessary for the user to interchange particles to force the
reaction into one form or the other. Inelastic excitation is
implied if the mass and charge of A and B, and of BIGA and BIGB,
are the same.

The projectile or ejectile tound state (whichever is appro-
priate) is always referred to as the projectile bcund state while
the target or residual nucleus bound state is called the target
bound state. The ¢ value of the reaction is the difference of the
outgoing and incoming kinetic energies in the center of mass systen
so that in terms of the bound state energies

E (projectile) - E(target) stripping,

Q -
E(target) - E(projectile) : pickup.

Q

Note that Ptolemy deals with actual bound state energies (i.e.,
negative numbers). In the case of inelastic excitation, the
Q-value is, of course, Jjust the negative of the excitation energy.
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B - Ptolemy Syntax

Ptolemy uses a free-form keyword-based input. Options are
specified and stages of the calculation selected by the specifica-
tion of the appropriate keyword. Numeric values are€ entered by the
specification of a number entering keyword followed by the qe31red
value. One or more keywords and associated numbers may be included
on a single input linet+ or a data value may be on the lipe
following its keyword. (The CHANNEL, REACTION and HEADEE keywords
are exceptions and require associated information to be on thg same
input line.) Words and numbers may not be split across two lines
and they may not contain imbedded blanks. In both TS0 and batch
usage, Ptolemy uses only the first 72 positions of the input line;
the last 8 are reserved for optional line numbers that will be

printed but otherwise ignored.

Keywords may be separated from other keywords on the same line
by blanks, commas, Or sSeguences of blanks and commas. The equal
sign may be used (but is not required) between a keyword and its
associated data value. The colon may be used following the
CHANNEL, REACTICN and HEADER keywords but should not otherwise be
used in Ptolemy input. The semicolon is used to begin a stage of
the calculation; it indicates that all input needed for that stage

has been provided.

Numerical data may be entered with or without a decimal point
and may have the E form of exponent. Valid numerical inputs are

2, 2.3, .0002, 2E-4, 2.325E+7, -5.3, +IE=5 <

An "E" appearing in a number indicates the teginning of the power
of 10 bywhich the number is to be multiplied. Thus

5. 3F=7 = B3 X 10=7
1E20 = 10+20

Angular momenta that have the possibility of being half-integer (J
or S values but not L values) have a special form of input. They
may be either simple integers or integers followed by "/2" to indi-

cate half integer values. They should not be coded with a decimal
point. Thus

JF =02, 8 SLB /2% B = Ly
are all valid (the last is the same as JP = 2) while

gli=l g 5 = Mk

+ Igput lines are either cards in an input deck for a batch rum or
lines typed at a terminal in TSO usage of Ptolemy.
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are both invalid. Such J and S values may be followed by a parity
sign which will be ignored. Thus

are all equivalent.

Keywords may have more than eight characters in their nanmes
btut only the first 8 characters are used and required. Keywords
never have embedded blanks in their names.

Comments may be placed anywhere in the input. They are
preceded by a dollar sign ($) which indicates that the rest of the
input line is a comment. If a second dollar sign appears on the
same line, the comment is terminated and the remainder of the line
is processed as normal input.
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The basic ingredients of the DWBA calculations performed by
Ptolemy are two-body wavefunctions — optical-model scattering
states for inelastic excitation and both bound-state and optical-
model scattering states for transfer. Obviously, optical-model
scattering states are also used in the optical model fitter.

Cne may use the facilities of Ptolemy to compute the proper-
ties of two-body bound or scattering states without doing a larger
scale calculation. Such calculations will te referred to as
nstand-alone" two-body calculations. Wherever possible the same
keywords and conventions are used for defining the two-tcdy states
that are components of a larger calculation as are used in stand-a-
lone two-body calculations. Examples are the definitions of the
potentials and the specification of the integration grid used to
solve the Schroedinger equation. For this reason we describe the
stand-alone two-body calculations before progressing to the more
complicated calculations -- the material introduced in this chapter
will be refered to in many of the succeeding chapters.

Stand-alone two-body calculations are done by defining the two
particles and the potential that acts between them and then
entering a semicolon to start the calculation. If the energy is
negative a bound state calculation will be made, if it is positive
the two-body scattering will be computed. If desired one may use
the keywords BCUNDSTATE or SCATTEKING to indicate which is to be
done and the energy will be checked for validity. Although it is
possible to mix stand-alone and DWBA calculations in one job, it is
recommended that separate jobs be used for stand-alone and complete
CWBA runs. However many stand-alone calculations of both bound
states and scattering may be done in one job.

The two particles involved in the stand-alone calculation are
referred to as the "projectile" and "target." These words have
their customary meanings for scattering states; the only distirc-
tion for bound states is that the projectile's angular momentum is
used to determine the spin-orbit force.

The CHANNEL keyword may be used to specify the nuclei in the
two-body state. Some examples will illustrate its form:

CHANNEL 12C + 208PB
CHANNEL: P + 11B = C12
CHANNEL = 209BI(7/2- .9) = P + 208PB
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The first example gives a scattering state while the other two
define bound states. Note that in thke case of bounq state chan-
nels, the resulitant bound state may be either the first nucleus
(inwhich case it is followed by an equal sign) ‘or the last nucleus,

In all cases the projectile and target nust befsep;ratid :Ytz Eius
si d the proijectile always comes first. If a bound sta
e S — ither first or last

being specified, the composite nucleus may be ei )
and must be separated from the other two nuclei by an equal sign.

The nucleides are defined by an element symbol consistipg gf
the atomic weight and a one- Or tvo-character element abbreviatilon.
The atomic weight may either precede or follow the symbo} but no
blank spaces or other punctuation may intervene. In addition the
following symbols (without atomic weights) may be used:

- neutron,
- proton,
deuteron,
- triton,

— 3He'

- 4He.

> HOoO0=
|

Excited states may be indicated by enclosing the spin and
excitation energy in parentheses following the element symbol. The
left parenthesis for excited state specification must immediately
follow the element symbol. The excitation energy and sfin of the
excited state may be given in eitkher order, and the excitation
energy must include a decimal point even if it happens to be an
integer. Excitation energies are given in MeV. Any or all of the
two or three nuclei may be given an excited state specification.
The CHANNEL keyword and the complete channel specification must be
contained on a single input lire.

The CHANNEL keyword will define the projectile, target and
bound-state mass, ctarge, and irtrinsic spin. The intrinsic spins
and the ground-state mass excesses of the nucleii are found fronm
the 1975 Oak Ridge Atomic Mass Adjustment and the 1971 Nuclear
Wallet Cards compilationt. 1In addition for bound states the total
angular momentum and the bound-state (cluster separation) energy
are also defined.

If the CHANNEL keyword is nct used, the particle masses may be
entered with the keywords MP and MT which give the masses in ANU of
the projectile and target respectively. The masses do not need to
be integers. Alternatively one can use the keyword "M" to enter
the reduced mass in MeV/c2. The charges of the two particles may
be entered with the keywords ZP and zT. The excitation energies
may be entered using the keywords E*P and E*T; if they are not

+ F. Serduke, "Atomic Mass Table," Argonne Internal Report, 1975,
and private communication.
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entered, zero will be used. The projectile and target intrinsic
spins may be entered with the keywords SP and ST. The total
angular momentum of a bound state may be entered with the keyword
"J." It is not necessary to enter J or ST (the calculation does
not depend on them) and SP is necessary only if there is a spin-
orbit force.

The projectile and target will be recognized as identical if
they have the same mass, charge, spin, and excitation energy. 1In
such cases the appropriate spin statistics will be used for scat-
tering calculations. Non-identical particle scattering may be
forced by specifying a small excitation energy for one of the
particles.

The c.m. energy may be entered by using either of the keywords
ECM or E. 1In the case of bound states one of these should be used
to enter the energy as a negative number unless the CHANNEL keyword
is used. The laboratory scattering energy may be entered with the
keyword ELAB. In this case both MP and MT must be defined to allow
the conversion to the c.m. energy.

The number of nodes and orbital angular momenta of bound
states must be defined for bound state calculations. The keyword
NODES is used to specify the number of nodes. The node at the
origin is not included in the count so that the lowest bound state
for each value of L has 0 nodes. The keyword "L" is used to
specify the orbital angular momentum of the bound state. If a
spin-orbit force is being used in the bound state, it is necessary
to enter the total angular momentum of the "projectile". This is
done with the keyword JP. Jp, L and Sp are used to find the value
of LeS in the spin-orbit force. If either of St (the target spin)
or J (the total bound state spin) are zero, then Jp need not be
specified since it will be uniquely determined by other known
spins.

B - Specifying the Potentials

The potentials are detined by the keywords Vi, Ri or RiO,
and Ai where the suffix "i" indicates the potential that is being
defined. Possibilities for "i" are:

1) (null) - no suffix refers to the real part of the
Woods-Saxon well.

2) I - The suffix I refers to the imaginary part of the
Woods-Saxon well.

3) SO - The suffix SO designates the real part of the
spin-orbit force.

4) SOI - Imaginary part of the spin-orbit force.

5) SI - Imaginary surface potential.

6) C - Coulomb potential (VC and AC are not defined).
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The forms of these potentials are as follows:

1)

2)

3)

4)

5)

6)

Real part of the Woods-Saxon:
- ¥ 7 (1 #X)
X = exp[ (r-R)/A ]

Imaginary part of the Woods-Saxon (volume absorption):

- VI / (1 + XI)
XI = exp[ (r-RI)/AI ]

Real part of the spin-orbit:
+ (VSO+TAU*V) * ULeS * (1/r) * (dzd4r) 1/ (1+XS0)

XSO = exp[ (r-RSO)/ASO ]

Imaginary part of the spin-orbit:
+ (VSOI+TAUI*VI) * ULeS * (1/T) ko (d/ar) 1/(1+XS0I)

XSO0I = exp[ (r-RSOI)/ASOI ]

Imaginary surface potential (surface absorption):
+ VSI * u4*ASI * (dsdr) 1/(1+XSI)
XS = exp[. (c=R5I}/A5T |

Coulomb potential

a) point and uniform sphere:

+ Zp*Zt * e2 / L
+ Zp*Zt * e2 * (3 - (r/RC)2} / (2RC)

ee oo
=
Al \%
o
(@}

b) two uniform spheres:

where

+ Zp*Zt * e2 * 9 / (16 pi2 RCEF3 RCT3 )
* Integral(0, RCP) d3rp 1Integral(0, RCT) d43rt
1/ lc-rp-cti

Les = ( Jp(Jdp+1) - L(L+1) - Sp(Sp+1) ) / 2 .

The potential well depths are given in MeV. VNote that the
spin-orbit well depths may either be specified directly by using
the VSO and VSOI keywords or their ratio to the corresponding
Woods-Saxon depths may be given by using the TAU and TAUI keywords.
The TAU's are related to the LAMBDA's of DWUCK and LOLA by

TAU = LAMBDA/ (4%45.2)

Note that VSO and VSOI have dimensions of MeV since the factor "4"
in the definition of the spin-orbit force is interpreted as 2%*2
where one "2" converts LeS to Lesigma, and the other "2" is approx-
imately the square of the pion Compton wavelength in fm. The ratio
TAU is dimensionless. The spin-orbit force always refers to the
spin of the projectile coupled to its orbital angular momentum; the
spin of the target does not enter the potential. A spin-orbit
force may not be used if the particles are identical.



IV Elastic and Bound State Calculations 37

In all cases the radius parameter (RO, RIO, RSOO,'RSOIO, KS10,
RCO, RCOP, or RCOT) may be entered in place of the potential
radius. The radius is then computed as

R

RO * Mt**(1/3) : Mp
R :

2,
RO * { Mp¥%(1/3) + Mt¥*(1/3) } Mp > 3

IV IA

These formulas are generally appropriate for optical potentials,
but may result in unexpectedly large potential radii for bound
states of a nucleon cluster (such as an alpha particle) and a
heavier core.

Defining RC or RCO causes the "point and uniform sphere"
Coulomb potential (6a) to be used; otherwise the "two uniform
spheres" (6b) potential is used. 1In the latter case, the radius of
each nucleus may be explicitly entered with the RCP and PCT or RCOP
and RCOT keywords, or they may be left undefined. If they are not
defined, Ptolemy will choose them to give RMS radii roughly
consistent with those determined by electron scattering. These
radii are taken to be:

1 <A <L 2 R =20 J
3 <A £ 16 Values from lLandolt-Boernsteint ;
17 < A Values from Bohr and Mottelson formulat++ .

The Coulomb potential between two uniform spheres is not available
for bound states.

The real and imaginary potential parameters may be given a
dependance on the laboratory energy by the use of keywords that end
in "E" or "ESQ." 1In this case the guantities to be used in the
above equations will be computed as follows:

A = A + AE*Elab + AESQ*Elab? v
RO = RO + ROE*Elab + ROESQ*Elab2 ,
v =V + VE*Elab + VESQ*Elab? v
AI = AI + AIE*Elab + AIESQ*Elab2 ,
RIO = RIO + RIOE*Elab + RIOESQ*Elab? ,
VI = VI + VIE*Elab + VIESQ*Elab? .

The names appearing on the right of the equal signs in the above
equations are the keyword values the user enters. The quantities
on the left are then used to evaluate the potentials. The default
value for all the keywords ending in "E" or "EsSQ" is 0.

+ R. Hofstadter and H. k. Collard in Landolt-Boernstein, Numerical
Data and Functional Relationships in Science and Technology, Vol.
2, K.-H. Hellwege, ed. (Springer Verlag, 1967). Average values of
the entries in column 5 of Table 2.1, pp 32 - 34, are used.

++ A. Bohr and B. Mottelson, Nuclear Structure, Vol. I, (Benjamin,

New York, 19€9), pp 160 - 161.
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The keyword EINVERSES may pe used to indicate that 1/Elab and
1/Elab2 are to be used in the above formulas for'the energy
dependent parameters. The default is EPOWERS which results in the

abtove formulas.

i0 are not defined for the imaginary
part of a potential, Ptolemy will use the Ai or Ri for the real
part of the same potential (RSO will be used for rRsor, A for AI,
etc.). If ASO or Loth ESO and RSO0 are not defined, A or R will be
used for them. If ASI or both RSI and RSIO are not defined, AI or

RI will be used for them.

If Ai and/or both Ri and R

In process of computing the pound state wavefunctions it is
necessary that V (the potential depth) and E (the bound state
energy) be made consistent Wwith each other. Ptolemy varies one or
the other of these two quantities until they are consistent. Tpe
keywords FITV and FITE may be used to determine which quantity 1is
to be varied. FITV causes V to be changed to produce a well that
has the bound state energy E. If a spin-orbit force has been speci-
fied via the keyword TAU, the depth of the spin-orbit force is also
varied since the ratio of the spin-orbit force to the Woods-Saxon
well is held constant at TAU. On the other hand, if VSO is used to
specify the spin-orbit force, the strength of the spin-orbit force
is not changed as V is changed. FITE causes E to be computed as
the bound state energy of the given potential. The default is

FITV.

If a scattering calculation is being made, the S-matrix
elements will be found for a range of orbital angular momentum
values. This range may be explicitly specified by the LMIN and
LMAX keywords. If LMIN and/or LMAX are not specified, they will be
based on Lcritical (the angular momentum for which (S| = 1/2) which
is estimated via semi-classical expressions. In such cases the
four keywords LMINMULT, LMINSUB, LMAXMULT, and LMAYXADD are used to
compute LMIN and/or LMAX from the formulas:

LMIN
LMAX

Min( LMINMULT*Lcritical , Lcritical-LMINSUB ) ,
Max ( LMAXMULT*Lcritical , Lcritical+LMAXADD ) .

Note that if only one of LMIN or LMAX is explicitly specified, then
only the other is computed from the above formulas. One should
note that the extrapolation to large L-values that is provided in
LWBA calculations does not occur in elastic scattering calcula-
tions. Thus a larger LMAX or LMAXADD is required for elastic
scattering calculations.

It may be desired to compute the elastic S-matrix elements for
only one value of L. 1In such cases, the keyword L should be used
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to specify the desired value. If a spin-orbit force is entered for
a scattering problem, the S-matrices will be computed for all
values of Jp connected with each value of L (note that Sp is not
limited to 1/2 for spin-orbit forces). If it is desired to have
only one value of Jp, the keyword JP may be used to specify that
value. If both of the keywords "L" and "JP" are used, only one
scattering partial wave will be computed. Bound states are always
computed for only one value of L and Jp.

The keyword ELASTIC may be used to cause the elastic differen-
tial cross sections to be computed. The default is NOELASTIC which
suppresses the differential cross sections. The cross sections are
given in millibarns/steradian and as ratios to the corresponding
Ruther ford (Mott if the particles are identical) cross sections.
The cross sections are averaged over the initial spins and summed
over the final spinms.

The grid of c.m. angles on which the differential cross
sections are displayed is controlled by the keywords ANGLEMIN,
ANGLEMAX, and ANGLESTEP. The angles are given in degrees. The
default values are

ANGLEMIN = 0 ,
ANGLEMAX = 90 ,
ANGLESTEP = 1

The keyword LABANGLES may be used to indicate that ANGLEMIN,
ANGLEMAX, and ANGLESTEP specify a grid of laboratory angles. In
such cases there is a two to one mapping of labcratory angles to
c.m. angles if the projectile mass is greater than the target mass.
Ftolemy will convert positive laboratory angles to the smaller c.m.
angle and negative angles to the larger c.m. angle. In such cases
ANGLEMAX may be negative to cause the c.m. angles to steadily
increase through 909. The default is CMANGLES.

The computation of the two-body wavefunctions (both bound and
scattering states) may be controlled with the ASYMPTOPIRA and
STEPSIZE or STEPSPER keywords. ASYMPTOPIA specifies (in fm) the
radius at which the wavefunctions are to be assumed to be asymp-
totic. It is also the largest value of r for which the
wavefunctions will be computed and stored.

The keyword STEPSIZE gives the increment used in the solution
of the bound- and scattering-state Schroedinger equations. Since
arrays must be constructed that bave ASYMPTOPIA/STEPSIZE elements,
one should avoid making this ratio very large. The keyword
STEFSPER may be used to specify the number of steps to use per
wavelength. If it is entered, STEPSIZE will be computed according
to the formulas:

Bound states
Scattering

STEPSIZE
STEPSIZE

M%n( 1/kappa, A ) / STEPSPER
Min( lambda, 2%A ) / STEPSPER

where "kappa" is the bound state inverse range:
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kappa = sqrt ( 2*¥MX|E| ) o
and "lambda" is the scattering wavelength:
lambda = 2%Pi / sqrt( 2*M*E ) .

In both cases "A" is the diffuseness of the real part of the
central Woods-Saxon well. It is suggested that STEPSPEK ;e used
instead of STEESIZE since then the step size will gutomatlcally be
adjusted as the wavelength changes due to changes 1n the scattering
energy. If both STEPSIZE and STEPSPER are defined, STEPSPER has

precedence.

The keyword PARAMETERSET may be used to select a standard set
of values for the calculation-controlling keywords: The keyword is
followed by the name of the desired set; Table I gives the names of

TABLE I
PARAMETERSET names and associated values for
elastic scattering calculations. The first column

gives the default values.

Keyword Pefault EL1 EL?2 EL3
LMINSUE 20 15 20 25
LMINMULT .6 5 .6 @5
LMAXADD 30 15 20 25
LMAXMULT 1.6 1.6 1.8 20
ASYMPTOPIA 20 15 20 25
STEPSPER none 12 15 20
FITACCURACY 10-3 2%10-3 2%10—¢ 2%10-5

the sets for elastic scattering and the associated values. Indi-
vidual settings may then be overridden by subsequently entering the
appropriate keywords. Note that STEPSPER and not STEPSIZE is
defined by these PARAMETERSET sets. Since STEPSPER has precedence
over STEPSIZE, one must use the command

UNDEFINE STEPSPER, STEPSIZE = sSsss

if one wants to enter a specific STEPSIZE after having used
PARAMETE?SET (UNDEFINE is defined on page 77). The FITACCURACY
keyword in Table I will be explained in the chapter on optical
model fits.
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D - The Two-Body Wavefunctions

The computed wave functions (for both bound and scattering
states) will be printed if the keyword WEITESTEP is used. This
keyword specifies the stepsize for which the wavefunction is to be
tabulated. The value of WRITESTEP should be a multiple of STEPSIZE
(page 39); if it is not, the closest multiple of STEPSIZE will be
used. Setting WRITESTEP equal to 0 (the default) will suppress the
rrinting of the wavefunction.

The bound state wavefunctions are the solutions of the Schroe-
dinger equation

{ htar2/(2Mr2) [ -(dydr)r2 (d/drc) + L (L+1) ]
+ V() - E} Phi(r) =0 ,

while the scattering wavefunctions are the solutions of

{ hbar2/(2M) [ -d2/dr2 + L(L+1)/r2 ]
+ V(r) - E} £(L)(r) = 0 .

The bound state wavefunctions are normalized *o unity so that
Integral(0 to intimy€y) de £z Phi= "= 1 '

The scattering wavefunctions are normalized to have the asymptotic
form

f(r) ---> (1/2) * { (1+S)*F(kr) + 1 (1-S) *G(kr) }
= cos (D) exp(iD) { F(kr) + tan(D) G(kr) } 5

where F and G are the regular and irregular Coulomb functions, and
D is the complex phase shift [S = exp(2iD)]. If the optical poten-
tial is real, then the phase shift D is real and the phase of the
wavefunction is exp(iD) for all r. In this case one might want
to use the REALWAVE keyword to cause the wavefunctions to be multi-
plied by exp (-iD) so that

f£(r) ---> cos(D) F(kr) + sin (D) G(kr) [REALWAVE]

The default is COMPLEXWAVE. Note that asymptotically the bound
state wave functions behave as exp(-kappa*r)/r while the scattering
wavefunctions dc not have a 1/r in their asymptotic form.

The name of the bound state wavefunction will be PHIn where
nn" is an integer that is 1 for the first bound state and is
increased by 1 for each subsequent bound state. aAfter n = 9, it is
cet back to 1 again. Thus one can have up to nine bound state
wavefunctions in the allocator at once. The names of the real and
imaginary scattering wave functions will be WAVER and WAVEI. If it
is desired to have more than one scattering wavefunction in the
allocator at once, the keywords RENAME or COPY should be used (see

Sec. VIII).



The keyword CHECKASYMPT may be used to cause the rate ot
convergence of the scattering wavefunctions to the asymptotic form
given above to be displayed when the wavefunction is gomputed.. The
difference of the exact wavefunction and the asymptotic form will
te printed at intervals determined by WRITESTEP (yhich must also be
defined). The keyword NOCHECKASYM cancels a previously entered

CHECKASYMPT and is the default.

ptolemy produces a summary of the two-body channel that for_
the most part is self-explanatory. The summary contains propertiles
cf the nuclei (spin, mass, etc.) and the two-body scattering or
tournd-state energy. Following this is the potential summary in
which there is a line for each non-zero potential. The well depths
are given in a column labeled "Coupling Comns."; the entry in this
column for the Coulomb potential is, the Sommerfeld parameter. If
the calculation is of a bound state, the summary is produced after
the calculation is complete and thus contains the real well depth
(or binding energy if FITE was specified) that is the result of the
search for an eigenvalue of the Schroedinger egquation.

During the computation of elastic wavefunctions, the S-matrix
elements, their magnitudes and phases (in degrees), and the trans-
pission coefficients are tabulated. If the keyword ELASTIC is
specified, the tabulation of S-matrix elements is followed by a
tabulation of elastic cross sections. In this tabulation scat-
tering angles (in degrees) and differential cross sections are
given in both the c.m. and laboratory frames. 1In addition the c.m.
Rutherford cross section and the ratio of the elastic cross section
to the Rutherford value are given. If the scattering is of iden-
tical particles, then all of the cross sections are suitably
symmetrized (the resulting symmetrized Rutherford cross sections
are sometimes referred to as Mott cross sections).

The last two columns of this tabulation are labeled "% PER LOW
1" and "% PER HIGH L" and contain indications of the errors in the
differential cross sections due to the low and high orbital angular
momentum limits. They are defined as

(% PER LOW L]
[% PER HIGH L]

100* {sigma (LMIN) -sigma (LMIN+2)}/2 ,
100* {sigma (LMAX)-sigma (LMAX-2)}/2 ,

and thus are the percent error for omitting the smallest and
largest L-value used in the calculation. Experience has shown that
the actual error in the cross sections is typically five times the
number printed, but such an estimate is strongly dependent on the
rate at which |S| is approaching 0 or 1. (Of course, if LMIN=0 the
low L error may be ignored.)
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| Following the differential cross section tabulation, the total
| reaction cross section and the nuclear total cross section are
| printed. These quantities are defined in Chapter II.
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V - Optical Model Potential Fits

Ptolemy provides a powerful and efficient program for fitting
optical model potentials to elastic scattering data. Data for more
than one elastic scattering reaction or at more than one bombarding
energy may be used in a fit. The optical potentials may be given
an energy dependance. The normalization of the data and the labor-
atory angle calibration may be used as fit parameters.

A - Specifying the Fit Parameters and Data

The input for an optical model fit consists of the following
items:

1) specification of the potential parameters
that are to be varied in the fit,

2) initial values of the search parameters and the
fixed values of all other potential parameters,

3) experimerntal data,

4) parameters to control the fit and elastic
scattering calculations.

Items 1 to 4 may be given in any order. The end of the input for a
fit is signaled by a semicolon (;) which causes the fit to begin.
When the fit is complete, the potential parameters will be set to
the best potential parameters that were found. 1In addition the
predicted optical model scattering cross sections will be printed
for each experimental point thkat was included in the fit. The user
may then enter control lines to compute the elastic scattering on a
uniform angular grid, or he may increase the accuracy of the calcu-
lation (through the use of keywords such as LMINMULT, LMAXADD,
STEPSPER or FITACCURACY) and resume the search by entering a second

semicolon.

Both the fixed and initial potential parameters are entered
using the potential keywords of Section IV-B. The LMINSUB, LA4IN,
IMAX, LMINMULT, LMAXADD, LMAXMULT, S1EPSIZE, STEPSPER and
ASYMPTCPIA keywords (Section IV-C) may be used to control the accu-
racy of the elastic scattering calculations during the search.
Alternatively one of the elastic PARAMETERSET keywords (page 40)

may be used.

The parameters to be varied in the fit are specified by the
FIT keyword. This keyword is followed by a list of potential
parameters (page 35) and/or renormalization factors and laboratory
angle shifts to be varied. The list must be enclosed in
parentheses. If two or more potential parameters are to be held
equal to each other during the fit, they should be joined by an
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equal sign in the FIT list. Some examples of valid FIT
specifications are:

FIT (V VI) - a two-parameter st ) .

FIT ( A=AI, AE=AIE, V) - a three-parameter fit with the
same energy dependance in A and AI;

FIT ( RO=RIO=RCO ) - a one-parameter fit.

Each FIT parameter must have its initial value explicitly entered
by means of the potential-defining keywords of Sec. IV-B. ?he
initial value of the first of a string of equal parameters is the
one that will be used to start the search.

The normalization of the data and/or the zero point of the
laboratory angles may be treated as fit parameters. If only one
group of data is being fitted, the keywords RENORMALIZATICN and
ANGLESHIFT may be included in the list of FIT parameters to cause
these quantities to be included in the search. (See the descrip-
tion of the DATA keyword below for a precise definition of the
meaning of ANGLESHIFT.) If there is more than one group of data to
be fitted, the keywords RENORMD and/or SHIFTn, where "n" is an
integer from 1 to 20, may be used to indicate which group of data
is to be adjusted in magnitude and/or angle. If several groups of
data are to be adjusted, then there will be several RENORMD's or
SHIFTn's in the FIT list; these may be connected with equal signs
if the same adjustment is to be made to all of them. The initial
values of the renormalizations and shifts that are part of the
seach are specified in the DATA keyword (see below). Some examples
of fits that include searches on the renormalization or angles are:

FIT ( V VI A RENORM ) - assumes only one data
group.

FIT ( RO RIO SHIFT1=SHIFT2 RENORM1 RENORM2 ) - two
data groups, both have the same unknown
error in angles but possibly different
errors in their normalizations.

The default minimizing program (see page 49) cannot be used f the
laboratory angle shift is one of the fit parameters. 1In such cases
the POWELL65 or ROCORD minimizer must be specified.

The experimental data are entered using the DATA keyword.
This keyword is followed by a pair of parentheses that enclose all
of the data that are to be used. As many cards as are necessary
may be used to enter the data; the end of the DATA keyword is
signallgd by the closing paranthesis. If a second DATA keyword
cccurs in a given job, it will replace, not supplement, the data
entered with the first keyword. The data are entered in one or
more groups, each containing data for a single elastic channel at 2
single laboratory energy. Each group is preceded by a list of
keyyords that give the elastic channel, the laboratory energy,
optional overall weight and renormalization factors, and the type
of data to be entered. The data then follow these keywords. The
start of the next group is indicated by the occurence of a keyword.
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The elastic channel is specified by the CHANNEL keyword which
is followed by an elastic channel specification (see page 33). The
laboratory energy of the group of data is specified using the ELAB
keyword and is in MeV. If there is only one group of data, the
channel and/or laboratory energy may be specified outside (either
before or after) the DATA keyword. Each data item is weighted in
the chi-squared sum by the square of the inverse of its experi-
mental error. An overall weight factor that will multiply each of
these individual weights may be entered using the WEIGHT keyword.
The keyword RENORMALIZATION may be used to enter a renormalization
factor that is multiplied into each experimental value before
computing the chi-squared sum. If WEIGHT or RENORMALIZATION are
not entered, the default value of unity is used.

The laboratory angles of the data can be shifted by a constant
angle with the ANGLESHIFT keyword. This keyword specifies an
increment (in degrees) that is to be added to each angle in the
laboratory frame. ([In the Almagest (ca. 130 AD) Ptolemy "updated"
the positions of some 1000 stars by shifting the positions of every
star by the same amount+.] Input c.m. angles and data are trans-
formed to the laboratory frame for this shift. After the shift,
the Jacobian relating the c.m. and laboratory frames is recomputed
at the new angle, and the angles and data are transformed back to
the c.m. frame. Furthermore if the cross sections are given as
ratios to the Rutherford cross sections, the data values are
changed to correspond to the Rutherford cross sections at the new
angles. Thus this keyword treats the data as if the absolute
normalization of the data is experimentally known. If the data was
normalized to the Rutherford cross section for small angles, it
will be necessary to use the RENORMALIZATION keyword to specify a
suitable renormalization factor [the average (over the small
angles) of the ratios of the Rutherford cross sections at the orig-
inal and shifted angles] for the shifted data.

A set of three or four keywords is used to specify the type
and order of data being entered. The set must consist of one
keyword from each of the following three groups:

1) ANGLE, CMANGLE, LABANGLE;
2) SIGMA, CMSIGMA, LABSIGMA, SIGMATORUTH;
3) ERROR, PERCENTERROR, MBERROR.

In addition a fourth keyword, POLARIZATION, may be used to enter
polarization data, but such data will be ignored in the fit. The
subsequent data is entered in triples or quadruples of numbers
whose order is the same as that of the three or four keywords.
These keywords remain in effect until a new set is specified; if
any one of them is entered, then a complete new set must be given.

+ R. R. Newton, "The Crime of Claudius Ptolemy," (John Hopkins
University Press, 1977).
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One of the ANGLE, CMANGLE, or LABANGLE keywords is used to
indicate the scattering angles of the data. The ANGLE oOr CMANGLE
keywords are used to designate center-of-mass anglgs in degrees.
The LABANGLE keyword means that laboratory angles 1n degrees w%ll
be given. In this case there are two c.m. angles associated with
each laboratory angle if the projectile mass exceeds the target
mass. For such cases, positive angles are converted to the smaller
possible c.m. angle, while negative angles are conyerted to the
larger. It is not possible to have the cross sections for both
c.m. angles added together fcr comparison with the data.

The type of data that is being entered is indicated by the
SIGMA, CMSIGMA, LAESIGMA, oOr SIGMATOFUTH keywords. The leSt three
keywords indicate that cross sectiors in millibarns are being
entered. If SIGMA is used, the cross sections are in the rest
frame (c.m. or laboratory) indicated by the ANGLE, CMANGLE, or
LABANGLE keywords. The keywords CMSIGMA or LABSIGMA may be used to
explicitly indicate the choice of frame or to specify c.m. CILOSS
sections at laboratory angles (or vice versa). Ratios of cross
sections to the Rutherford (Mott for identical particle scattering)
cross sections are indicated by the keyword SIGMATORUTH.

The keywords ERROR, MBERKCR or PERCENTERROR are used to indi-
cate the nature of the experimental errors. The ERROR keyword
means that errors are being entered in the same units as the data.
Thus the errors will be expressed either in millibarns (in the c.n.
or laboratory frames as determined by the data) or as a ratio to
the Rutherford cross section. The keyword MBERROR indicates that
no matter what the data type, the errors are in millibarns. If the
data are ratios to Rutherford, then such errors are expressed in
the c.m. frame; otherwise the frame is the same as that used for
the data. The keyword PERCENTERROR indicates that the errors are
expressed in percent.

The following example illustrates the DATA keyword:

DATA ( CHANNEL 160+40CA ELAB=48
ANGLE PERCENTERROR SIGMATORUTH
10 5 1.023, 1255488559 208308305
SIS 2
ELAB = 56 WEIGHT = .5 ANGLE SIGMA MBERROR
ey Sls - osis 15 1. -1 20 .1 .1 )

Here we are entering data at two different energies. Both sets of
data are for 160+48Ca elastic scattering. The data at the first
energy is given at angles of 10, 12.5, 20, and 30 degrees and
c9n51sts of ratios to the Rutherford cross section that are respec-
t}vely 1.023, .99, .5, and .12. 1The errors in these numbers are
given as percentages. The data for the second energy are giveL in
millibarns with errors also specified in millibarns. If data that
consists of the same quantities in the same order is to be entered
at several energies, it is not necessary to repeat the angle, cross
section and error keywords for each data group.
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One of the keywords LMCHOL, QUAVER, MINIM, DAVIDON, POWELL6S
or ROCORD may le used to pick the minimizing program that is to
make the search. The average user will have need of only the
default which is LMCHOL. The keywords FITMODE, FITMULTIPLE,
FITRATIO, NUMRANDOM, and REINITIALIZE are used by some of the
following fitters; the default values will almost always suffice.
The keywords FITACCURACY and MAXFUNCTIONS are used by all the
fitters. A description of these minimizers follows:

1) LMCHOL - This is a minimizer that uses analytically
computed gradients and makes specific use of the sum-of-
squares property ot the function that is being minimized.
The analytic gradients are computed as the expectation
value in the distorted waves of the derivatives of the
potential. The potential derivatives are evaluated
numerically. LMCHOL is based on the Harwell subroutine
VAO7A which was coded by Fletcher. Despite the fact that
the computation of the gradients can more than double the
chi-squared sum evaluation time, the LMCHOL and QUAVEK
fitters usually fird a minimum in less than half the CPU
time required by the other fitters. We know of no cases
inwhich the CPU time is significantly longer for LMCHOL.
The LMCHOL fitter is therefore highly recommended and is
the default fitter.

2) QUAVER - This 1is a quasi-Newton fitter that uses a
pseudo-inverse procedure to solve the required systems of
linear equations. The search path followed by QUAVER
differs significantly from that followed by IMCHOL only
when there are directions in parameter space for which
the second derivative of chi-squared is nearly zero. The
keyword FITRATIO may be used to eliminate steps along
such poorly determined linear combinations of the optical
model parameters. The default value of 10-% will have
this effect; smaller values (such as 10-15) will elimi-
nate such restrictions on the search direction, and
result in searches that are almost identical to those of
LMCHOL. Setting PRINT=2 (page 8J) will cause the
singular values (the quantities that indicate which
linear combinations of parameters are poorly determined)
to be printed at each iteration. For both the QUAVER and
MINIM fitters, the keyword FITMULTIPLE is a divisor used
to reduce the step length when a step to a larger func-
tion value is attempted. The default value is 5.

3) MINIM - This is a variable-metric fitter using the
1972 Fletcher presciption for the metric update. It is
generally slower than the above two fitters.

49
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4) DAVIDON - This uses the original variable-metric
prescription of Davidon. It is based on the.Dav1@op _
fitter found in the Argonne Applied Mathematics Division
library. This fitter is somewhat slower than the
Fletcher fitter (MINIM). The keyword FITMULTIPLE deter-
mines the initial estimate of the metric matrix. The
default (FITMULTIPLE = 0 or FITMULTIPLE > 100) is to use
the second derivative approximation generated from the_
Jacobian of the chi-squared function. If FITMULTIPLE 1s
set to a nonzero value, a diagonal matrix will be used as
the initial metric and thus the search will start along
the gradient direction. The diagonal elements of'the
matrix will be |FITMULTIPLE|*D (i) where D(i) = 1 if
FITMULTIPLE > 0, and D(i) = X (1)**2 1% FITMULTIPLE < 0 (x
designates the parameter vector). The keyword NTMRANDOM
may be used to specify the nunber of random steps that
are to be made in confirming a minimunm. The default is

Zero.

5) POWELL65 - This is a minimizer that makes specific
use of the sum-of-squares property of the fanction but
does not require Ptolemy to evaluate the gradient of the
function. It is the Harwell subroutine VAOZA which is
based on a 1965 paper of Powell. The POWELL65 search
algorithm is usually gquite efficient for the first few
iterations but then often begins to take very small steps
for subsequent iterations. Therefore it often pays to
terminate the search intermittently and restart it again.
This may be accomplished by using the keyword REINI-
TIALIZE to specify the number of iterations between
restarts. REINITIALIZE = 16 is a reasonable value for
POWELL65; the default is zero which suppresses reinitial-
ization. The keyword FITMULTIPLE is used to limit the
size of a single step; no step will be allowed to exceed
FITMULTIPLE*FITACCURACY in relative size. The default is
500, but some tests indicate that larger values (1C000)
may result in faster searches.

6) KOCORD - This minimizer does not make use of the
sum-of-squares property of the function nor of deriva-
tives. It is provided as an alternative should the
preceding minimizers fail to behave reasonably. The
keyword FITMODE may be used to specify the initial value
of IRET for KOCORKD; the default is -1021, and should be
adequate for most purposes. The keyword NUMRANDOM has
the same meaning as for the DAVIDON fitter.

The FITACCURACY keyword may be used to specify the accuracy

with which the potential parameters are to be found. Its signifi-
cance depends upon which minimizer is used but for the first five
fitters above it gives the relative accuracy to which each poten-
tial parameter or the minimum chi-squared value is to be found.

The default value is 10—-3. This keyword is set by the elastic
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PARAMETERSET's (page 40). The MAXFUNCTION keyword limits the
nunber of chi-squared sums that may be evaluated during a search.
Its default value is 50 which is more than enough for the default

fitter (LMCHOL).

C - Reading the Output

The output for an optical-model fit begins with a summary of
the elastic channels that are being fitted. For each data group,
the laboratory energy, the CHANNEL specification, and the type of
statistics are listed. The orbital angular momentum range and the
stepsize used in solving the Schroedinger equation are also
printed. This information is followed by a list of the parameters
that are being varied in the fit and their initial values. If data
was entered in the laboratory system, the conversion of that data
to the c.m. system is shown next. In all subsequent output, the
data and fitted values will be printed in the c.m. system only.

One or more pages is then produced for each data group showing
the initial values of the fit. The potential parameters evaluated
for the channel and laboratory energy are given for each data
group. These are followed by a tabulation of the experimental and
computed values of the cross sections at each angle involved in the
fit. The cross sections are given as ratios to the Rutherford
cross section and the angles are c.m. angles. The unsquared
contributions to the chi-squared sum are given in a column labeled
" (FIT-EXP) /JERROR; " the chi-squared sum is the sum of the squares of
the entries in this column. The factor WEIGHT is not included in
this column. The last column in this tabulation is labeled "%/L AT
LMAX" and has been described in Sec. IV-E. Each data group listing
is terminated with several lines summarizing the chi-squared for
that group. The first line gives the chi-squared per point (both
unweighted and weighted) computed using the RENOFRMALIZATION entered
ty the user (the value is also printed in the line). The next line
gives that value of RENORMALIZATION that results in the minimum
chi-squared (assumirg that no other parameters are changed) and the
resulting unweighted chi-squared per point. Finally, if there is
more than one data group in the fit, the contribution of the
current group to the total weighted chi-squared per point is
printed, and the total chi-squared per point and chi-squared per
degree of freedom for all the data groups are listed at the end of
all the data groups.

After this listing of the initial conditions, the course of
the fit is summarized by several lines printed at the ernd of each
iteration. The lines give the total chi-squared per point and the
corresponding parameter values (the parameters are listed in the
order they were specified in the FIT keyword — this order may be
found in the top right-side of the header on each page). If the
listing of iterations terminates with the message
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FIT COMPLETE. FINAL RESULTS FOLLOW

then the minimizer being used located a minimum of chi-squared and
terminated normally. Any other message indicates an abpormél .
termination. The most likely cause of an abnormal termination 1s
the failure of the minimizer to locate a minimum within Fhe'al%owed
number of function references (steps); such a condition is indi-

cated by the message

NOT ENOUGH ITERATIONS TO ACHIEVE A GOOD FIT

In such cases the parameter values at the time of termination of
the minimizer are used as the final parameter values; these will
not be parameters corresponding to a mininmum of chi-squared.

Ptolemy then gives a listing of the final parameter values and of
the resulting fit; the format of this listing is identical to that

used for the initial conditionms.

A page labeled "FINAL VALUES AND UNCERTAINTIES" follows the
listing of the fit. This page has a.column for each fit parameter;
the colunns are labeled with the parameter names. The first line
of the table contains the final value of each parameter. Next are
several lines giving the gradient at the minimum; the gradient is
ideally zero but if there are large second derivatives may be
significantly non-zero. Then there are two lines giving the KNS
uncertainty and the relative RMS uncertainty in the parameters.
These are based on the diagonal elements of the covariance matrix
(error matrix) and are defined as the changes in the parameter
values that would result in the chi-squared (not chi-squared per
point) increasing by unity. Finally the eigenvalues and eigenvec-
tors of the relative covariance matrix are listed. Each row of
this listing contairs the square root of an eigenvalue and the
corresponding eigenvector. The square root of the eigenvalue is
the relative change in the linear combination of parameters speci-
fied by the eigenvector that would result in the chi-squared
increasing by unity. Thus eigenvectors with small eigenvalues
represent well-determined combinations of parameters.
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VI - Collective Model DWBA for Inelastic Excitation

Ptolemy is capable of doing DWBA calculations for inelastic-
scattering reactions. The collective-model form factor is used for
the nuclear part of the effective interaction. Only one nucleus
may be excited in the reaction and that nucleus must initially have
spin zero. The multipolarity (refered to as Lx) of the excitation
must be greater than zero, but is otherwise not limited. The
effective interaction that causes the excitation is the radial
derivative of the Coulomb and both real and imaginary nuclear parts
of an optical potential. Usually this optical potential will be
that of the incoming channel, but a different potential may be
used.

A - Specifying the Physical Problem

In a standard Ptolemy calculation of an inelastic-scattering
reaction, the input will be in the following order:

1) Masses, charges, etc., of the 4 nuclei.

2) 6rid and other calculation-control parameters.

3) Optical potentials for the two scattering states.

4) Optional potential changes for effective interaction.

Variations of this order are possible: item 4) is not required and
item 2) may be spread among the other items.

In more detail a typical Ptolemy input deck for inelastic
excitation will look like

REACTION: reaction definition, ELAB = ...
PARAMETERSET ...., other parameter specifications
INCOMING incoming optical parameters ;
OUTGOING outgoing optical parameters ;
Effective-interaction parameters (optional)

RETURN

Here the keywords INCOMING, and OUTGOING indicate which otential
parameters are being entered. The semicolons indicate that the
complete potential has been derined and that Ptolemy is to go ahead
with that stage of the computation (the semicolons are actually
part of the input). The final semicolon indicates that all of the
computational parameters have been entered and that the DWBA calcu-
lation should begin. Of course each of the potential
specifications will in general require more than one input line.
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icipants in the reaction is
lowed by the
Some

The easiest way to define the part 3
to use the REACTION keyword. This keyword is follc
statement of the reaction in standard nuclear terminology.

examples will best illustrate the possibilities:

REACTION: U48CA(C12, 12C)CA43(2+ 3.83)
REACTION = 208PB(160, 160(6.13, 3-))208PB

All four nuclei must be included in the REACTION specifigation,'and
the complete reaction specification must be on tpe same input llge
as the KEACTION keyword. Excited state information 1S gnclosed in
parentheses with no spaces or other punctuation separating the
nuclear symbol and the left parenthesis. Except as has been other-
wise indicated, blank spaces and commas may be freely usgd to make
the reaction specification more readatle. See the description of
the CHANNEL keyword (page 33) for details concerning the nuclide
symbols and excited-state specificatioas.

The REACTION keyword results in the definition of the atomic
mass, charge, spin, and excitation energy of the four particles.
Individual data values defined by the REACTION keyword may be over-
riden by the use ot other keywords or the REACTION keyword may ke
omitted and all of the particle definitioms entered via cther
keywords. These keywords are described 1n the chapter on transfer

reactions (page 62).

The scattering energy is entered by either of the keywords
ELAB or ECM followed by the energy in teV. In Lkoth cases the
energy refers to the incident kinetic energy; the outgoing energy
is determined from the Q value of the reaction. The excitation
energy is normally used by Ptolemy to determine the Q value of the
reaction. If desired, a different Q value may be entered by using
the keyword Q followed by the value in MeV.

The optical potentials for incoming and outgoing states are
entered using the potential defining keywords of Sec. IV-B. The
keywords INCOMING and OUTGOING indicate which state is being
defined and a semicolon (;) i3 used to indicate the end of a
particular definition. There are no default values for the radius
or diffusness parameters. The well depths are all zero by default.
The potential parameters used for the incoming state will also ke
used for the outgoing state unless they are explicitly overriden.
The laboratory energy corresponding to the outgoing scattering
energy is used for the outgoing scattering parameters so that the
same keyword values will give sligatly different potentials in the
incoming and outgoing channels if an energy dependence is speci-
fied. As an example, the 1nput lines

INCOMING V=50 VI=25 RO=1.2 A=.5 RCO0=1.2 ;
OUTGOING ;

define the same optical potential for both the incoming and
outgoing states. Since the radius and diffusemess of the imaginary
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potential are not given, they are choosen to be the same as those
of the real potential.

At present spin-orbit forces may not be used in the scattering
states of DWBA calculations.

The effective interaction for the inelastic excitation is:

H(r) = -BETA * [ R'*d(Vreal)/dr + RI'*d(Vimag)/dr ]
+ BETAC*RC' * 3ZA*ZBIGA*e2/(2Lx+1) * f£(r) G
where
f(r) = C**¥Lx / RC** (Lx+2) r < RC ,
= RC*% (Lx-1) / r**(Lx+1) >R RCR.

Here R' is the nuclear radius of the nucleus that is being excited:

K' = RO * A'V**x(1/3)
RI' = RIO * A'**¥(1/3)
RC' = RCO * A'**(1/3)

where the KO0 are the radius parameters used in the effective inter-
action. The atomic weight of the excited nucleus is denoted by A'
(A' = MA or A' = MBIGA). The guantities BETA*R', BETA*RI', and
BETAC*RC' are the so-called deformation lengths of the excited
nucleus. The definition of f(r) is that obtained from a multipole
expansion of a point charge interacting with a uniform sphere of
charge. Note that the full RC (not RC') appears in f(r).

The dimensionless Coulomb and nuclear deformation parameters
may be entered with the keywords BETAC and BETA respectively.
Alternatively the Coulomb deformation may be specified by the
keyword BELX which enters the b(E, Lx), in units of e2barn**Lx, for
the corresponding electromagnetic excitation process:

BELX ,, €xcitation)

B (E
[ 2J (final) +1]/[ 2J (initial)+1] B (E, decay)

nn

The value of BETAC is then computed from

BETAC = 4*Pi/ (3*Z) * sqrt(BELX) * (10/RC?") **Lx
* sqrt ([ 2J(initial) +1][2Lx+1]/(2Jd(final)+1]} ,

where 7 is the atomic number of the excited nucleus and RC' (in £fm)
is defined above. If both BETA and BETAC (or BELX) are not speci-
fied, then the missing parameter is chosen such that the
deformation lengths are equal:

BETA*R' = BETAC*RC' ,

where R' is the nuclear radius of the excited nucleus.
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The optical potential that appears in the effeqtive.interac—
tion is the optical potential that was used in the incoming state.
It may be modified by entering different potential parameters after
the semicolon that defines the outgoing state. I1f a potentlal_
parameter is not so changed, its value in the incoming state will

be used. Thus

INCOMING V=50 VI=20 RO=1.2 A=.65 RCO0=1.2 ;
OUTGOING ;
VI = 1E-6 ;

will result in the effective interaction being essentially real.

(Note that it is unfortunately not possible to redefine the well
depths to be exactly zero.)

B - Controlling the Calculation

The keywords LMIN and LMAX, or LMINMULT, LMINSUB, LMAXMULT,
and LMAXADD determine the range of L-values for which both the
nuclear and Coulomb excitation amplitudes are computed. These
keywords are explained on page 38, and reasonable values may be
found in Taple II below. The Lcritical used in the formulas on
page 38 is the average of the critical L-values in the incoming and
outgoing channels.

The Coulomb excitation amplitudes generally must be found for
much larger values of L than the LMAX used for the nuclear ampli-
tudes. Using a semi-classical approximation+, Ptolemy estimates an
Lmax' such that the Coulomb amplitudes are negligible. The keyword
DWCUTOFF may be used to control this choice; the choice is made
such that

|Amplitude(Lmax')| = DWCUTOFF * {Amplitude (Lcritical) | .

where both qmpl;tudes are the pure Coulomb amplitudes. Pure
Coulomb excitation amplitudes (evaluated using Coulomb scattering
wavefunctions) are used for LMAX < L < Lmax"‘.

For LMIN < L < LMAX, the nuclear and Coulomb amplitudes are
evaluated as a one-dimensional integral over the range SUMHAIN < r £
SUMMAX. The Coulomb contribution for SUMMAX < r < infinity is
then evglgated using the asymptotic expansion described later. The
lower limit (SUMMIN) is usually picked as that value of the radial
coordinate beyond which the elastic scattering wavefunction for

LMIN exceeds 10-!5 in magnitude. The upper limit (SUMMAX) is

+ K. Alder, A. Bohr, T. Huss, B. Mottelson and A. Winther, Rev.
Mod. Phys. 28, 432 (1956), Eq II E.83.
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chosen to be the value of ASYMPTOPIA specified for the scattering
wavefunctions. These two choices may be overridden with the
keywords SUMMIN and SUMMAX, but there should pbpe no need to do so.
The number of Gauss points used in the one-dimensional integral is
specified by the keyword SUMPOINTS which gives the number of points
to use per average wavelength in the incoming and outgoing chan-
nels. SUMPOINTS does not need to be an integer. The Gauss points
are mapped into the interval (SUMMIN, SUMMAX) using mappings
defined on page 66 which are controlled by the keywords MAPSUHM,
GAMMASUM, and SUMMID. The default value of SUMMID is the midpoint
of the (SUMMIN, SUMMAX) interval. There should never be any need
to override the default mapping procedure.

The computation outlined in the previous paragraph leaves the
following Coulomb excitation integrals to be evaluated:

< Lmax , SUMMAX £ r < infinity
< Lmax' , 0 £r < infinity .

In case 1) it is necessary to do these integrals for both the
regular and irregular Coulomb wavefunctions; linear combinations,
based on the elastic incoming and outgoing S-matrix elements, of
the resulting amplitudes are then used. For case 2) we assume that
the scattering is determined by the point Coulomb charges alone and
only the regular Coulomb wavefunctions are used.

In both cases the required Coulomb excitation amplitudes are
found by recursion relations on L. These recursion relations are
quite fast and are reasonanly stable. The starting values of the
recursion relations are found by a combination of numerical inte-
grations and an asymptotic expansion* for integrals of Coulomb
vavefunctions and inverse powers of r. The numerical integrals are
done cycle by cycle until the asymptotic expansion may be used; the
number (which must be an integer) of Gauss points used in each
wavelength is entered using the keyword NPCOULOMB. The relative
accuracy required of the asymptotic expansion may be controlled by
the keyword INELASACC. In addition a test of the recursion rela-
tions is made by explicitly computing the final recursed values.

If the recursion relation is in error by more than 10*INELASACC, a
warning message is printed. Reasonable values of NPCOULOMB and
INELASACC may be found in Table II below.

The computation of the scattering wavefunctions may be
controlled with the ASYMPTOPIA and STEPSIZE or STEPSPER keywords.
These keywords are defined on page 39. As has just been descrited,
the nuclear part of the excitation amplitude is integrated out to
ASYMPTOPIA; by the use of the asymptotic Belling expansion, the
Coulomb excitation amplitude is integrated to infinity.

+ J. A. Belling, J. Phys. B 1, 136 (1968).
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The keyword PARAMETERSET (page 40) may be used to select
standard grgups of grid-setting parameters. Table II gives the
PARAMETERSET names and the associated values that are suitable for

TABLE II
PARAMETERSET names and associated values .for
inelastic scattering calculations. The first

column gives the default values.

Keyword Default INELOCAI1 INELOCA2 INELOCA3
LMINMULT .6 0 0 0
LMAXADD 30 20 30 50
LMAXMULT 1.6 1.6 2 2.6
SUMPOINIS 6 6 8 12
GAMMASUM 5 5 5 5
INELASACC 10—5 10—-3 10—4 10—6
DWCUTOFF 10—-3 10-3 10—4 10—5
NPCOULOMB 8 6 8 10
ASYMPTOPIA 20 20 25 30
STEPSPER none 15 20 25

inelastic excitation calculations. Since the PARAMETERSET groups
of Table II define values of ASYMPTOPIA and STEPSPER that are to be

used in the two-body states, the PARAMETERSET keyword should
precede the definitions of the two-body states.

C - Reading the Qutput

As each of the two scattering states are entered, a summary of
the two-body channel and the potential is printed; this summary was
dgscribed in Sec. IV-E. The computation of the imelastic excita-
tion amplitudes is preceded by a page summarizing the reaction.
T@is page contains a listing of the nuclei involved in the reac-
tion, the deformation parameters, and the potential parameters used
for the effective interaction. The column labeled "DEPTH" in the
latter contains -3*ZA*ZBIGA*e2 for the Coulomb part of the effec-
tive 1pteraction. Next the range of angular momenta (LMIN, LMAX)
fgr which both the nuclear and Coulomb amplitudes are computed is
listed. This is followed with a summary of the one-dimensional
integration grid that is used to compute the non-asymptotic part of
these amplitudes.

§ext a summary of the determination of the maximum L value
(Lmax') needed for the Coulomb amplitudes is given. The maximum
value required for each (Lx, Lout-Li) pair is given; the maximum of
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all of these values is then used. Following this summary one or
more warning messages of the form

FOR LIN, LOUT = ...e. RECURSION IS POOR: ececse

may be printed. These indicate that the recursed values of the
Coulomb amplitudes did not compare well with the explicitly
computed values. Both values are printed in the message. If the
difference of the two values is not large, or if the values are
both unusually small, then the message may be ignored. Otherwise
the calculation should be repeated using a larger value of NPCOU-
LOMB and/or a smaller value of INELASACC. A page labeled
"INTERPOLATION AND EXTRAPOLATION IN L" contains the line "MAXIMUM
10 USED IN COMPUTING ...". This line gives the maximum value of L
(Lmax') for which the Coulomb amplitudes were computed by the
recursion relations.

The pages labeled "REACTION AND ELASTIC PARTIAL WAVE AMPLI-
TUDES" give the amplitudes for LMIN < L < LMAX. The columns
labeled "RADIAL INTEGRAL" give the magnitude and phase (in radians)
of the inelastic excitation amplitude. This is the amplitude
defined in Eg. (II.39) except that a factor (BETA+BETAC)/2 has
been removed. The columns labeled "INCOMING ELASTIC" and "OUTGOING
ELASTIC" give the magnitudes and phase-shifts (in radians) of the
elastic S-matrix elements. The Coulomb phase shifts are also given
in radians.

The last set of pages give the inelastic excitation cross
sections. These are given (in millibarns) in a column labeled
WREACTION" and are c.m. values. The column labeled "LOW L %/L" has
the significance described imn Sec. IV-E, however the column labeled
"% FROM L > LMAX" has a quite different meaning from the corre-
sponding column in the elastic scattering output. Here the column
gives (as a percentage) the total contribution of the (pure
Coulomb) amplitudes for LMAX < L £ Lmax'. It is not to be
construed as an indication of error. The columns labeled
"INCOMING/KUTHE&AFO&D" and "OUTGOING/RUTHERFOEKD" give the elastic
cross sections relative to the Rutherford values.

Following the tabulation of the differential cross sections is
a line labeled "TOTAL." This line gives the total inelastic exci-
tation cross section (computed by summing the partial-wave
amplitudes — not by integrating the printed angular distribution)
and the total reaction cross sections for the entrance and exit
channels. Following this line is a breakdown of the total excita-
tion cross section into contributions from each magnetic substate
(the axis of quantization is the incoming beam direction).
Although values are listed only for Mx 2 0, the listed values for
Mx > 0 are not doubled.
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VII - Finite kange DWBA for Transfer Reactions

Ptolemy can carry out finite range DWBA calculations for
particle transfer reactions. The reaction may be either stripping
or pickup, and may involve more than one exchanged orbital angular
momentum (refered to as Lx). Either the post or prior approxima-
tion may be used, and the effective interaction may include terms
for the Coulomb part of the bound-state potential, the core-core
Coulomb optical potential, and the real part of the core-core
nuclear optical potential. When all these terms are included, the
descrepency between post and prior calculations is usually less
than a few percent. Core-core terms for the imaginary part of the
optical potential may not be included.

A - Specifying the PhLysical Problem

In a standard Ptolemy calculation of transfer reactions, the
input will be in the following order:

1) Masses, charges, etc., of the 5 particles.

2) Integration grid specifications and L-value ranges.
3) Potentials for the two bound states.

4) Optical potentials for the two scattering states.

variations on this order are possible; the most likely is the
spreading of item 2) amoung the other items.

In more detail a typical Ptolemy input deck will look like
REACTION: reaction definition, ELAB = ...

PARAMETERKSET ...., other computation parameters
PROJECTILE projectile bound state parameters ;

TARGET target bound state parameters ;

INCOMING incoming optical parameters ;

OUTGOING outgoing optical parameters ;
’

RETURN

Here the keywords FROJECTILE, TARGET, INCOMING, and OUTGOING indi-
cate which potential parameters are being entered. The semicolons
indicate that the complete potential has been defined and that
Ptolemy is to go ahead with that stage of the computation (the
cemicolons are actually part of the input). The final semicolon
indicates that all of the computational parameters have been
entered and that the DWBA calculation should begin. Of course each
of the potential specifications will in general require more than

one input line.
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The easiest way to define the participants in the reaction is
to use the REACTION keyword. This keyword is followed by the
statement of the reaction in standard nuclear terminology. Some
examples will best illustrate the possibilities:

REACTION: U48CA (160, 14C)50TI

REACTION = 208PB(016,15N) BI209(7/2- .90)
REACTION PB208(016 15N(3/2, 6.2239))BI209
REACTION PB208(160(2,6.93) 12C)P0212

All four nuclei must be included in the REACTION specifigation, and
the complete reaction specification must be on the same input line
as the REACTICN keyword. Excited state information is enclosed in
parentheses with no spaces or other punctuation separating the
nuclear symbol and the left parenthesis. An excited state of the
initial target may not be given in this manner, but any or all of
the other three particles may have excited state descriptors. See
the description of the CHANNEL keyword (page 33) for details
concerning the nucleid symbols and excited-state specificationms.
Except as has been otherwise indicated, blank spaces and commas may
be freely used to make the reaction specification more readatle.

The REACTION keyword results in the definition of the atomic
mass and charge of the four particles. The atomic mass and charge
of the exchanged particle is then computed by subtraction. The
1975 0Oak Ridge Atomic Mass Adjustment and the 1971 Nuclear Wallet
Cards compilation+ is then used to find the ground state mass
excesses and spins of all 5 particles. The ground state mass
excesses (along with the excitation energies, if given) will be
used during the bound state computation to find the separation
energies of the exchanged particle (X) from the appropriate cores.

Individual data values defined by the REACTION keyword may be
overriden by the use of other keywords or the REACTION keyword may
be omitted and all of the particle definitions entered via other
keywords. The keywords that define the five particles have the
form "Ki" where "K" indicates what quantity is being defined and
"iv is a suffix indicating which particle is involved (BIGA, A, B,
BIGB, or X). The possibilities for K are

M - The mass in AMU. This need not be an integer.

Z - The charge.

J - The spin of the nucleus.

MXCG - The mass excess of the ground state.

E* - The excitation energy in MeV.

MXC - The mass excess of the nucleus ( MXCi = MXCGi + E*i).

A 0 Ser@uke, "Atomic Mass Table," Argonne Internal Report, 1975,
and private communication.
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As an example
MB=15, ZB=7, JB=3/2, E*XB=6.3239, MXCGB = .10152

would define the excited state of 15N contained in the third
REACTION example given above. (Alternatively one could have
entered MXCB = 6.42542 and left out the E*B and MXCGB keywords or
one could directly enter the proton separation energy at the time
of the 160 bound state calculation and leave out all the mass
excess specifications.) 1In the following example

KEACTION: 209BI(160 12C)213AT, JBIGB = 9/2

one is supplying the ground state spin of 213At which is not in the
the Nuclear Wallet Cards.

The scattering energy is entered by either of the keywords
ELAB or ECM followed by the energy in MeV. In both cases the
energy refers to the incident kinetic energy; the outgoing energy
is determined from the Q value of the reaction.

The O value may be entered by using the keyword Q followed by
the value in MeVv. If it is not entered it will be found as the
difference of the two bound state energies. If it is entered then
it is necessary to define only one of the bound state energies; the
other will be fcund using the Q value. Since the REACTION keyword
results in the definition of both bound state energies, it is
usually not necessary to enter the Q value.

The version of the DWBA on which Ptolemy is based uses as the
effective interaction that induces transfer the potential that
binds the composite particle at either the projectile or target
vertex. The vertex whose potential is to be used as the effective
interaction is specified by the keywords USEPROJECTILE or
USETARGET. USEFROJECTILE indicates that the potential for the
projectile bound state is the interaction potential; USETARGET
causes the target potential to be used. The default 1is
USEPROJECTILE. Note that we avoid the use of the words "post" and
"prior" in specifying the interaction vertex.

The content of the interaction potential is controlled with
the NUCONLY, USESIMPCOULOMB, USECOULOME or USECORE keywords.
NUCONLY means that only the nuclear part of the bound state poten-
tial is used in the interaction potential. (Most published DWBA
calculations have used this prescription). USESIMPCOULOME means
that the full bound state potential at the vertex designated by
USEPROJECTILE or USETARGET is used. USECOULOMB causes the nuclear
potential at the designated vertex to be used with the complete
three-body Coulomb potential. The inclusion of the Coulomb correc-
tions due to the third particle removes post/prior descrepancies
from the Coulomb part of the interaction and can result in much

| closer agreement between USETAKGET and USEPROJECTILE results. The
{ keyword USECORE may be used to include both the Coulomb and core-
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Coulomb corrections that are included by the USECOULOMBE keyword and
the core corrections from the real part of the nuclear optical
potential. Core corrections due to the imaginary part of the
optical potential (which are typically only a few percent) cannot
te included. The default is USECOKE. Note that DWBA ca}culgtions
are usually somewhat simpler numerically if the interaction 1is
attached to the vertex (usually the projectile vertex) involving
the lighter ions. In a reaction such as 208ph (160, 17022°7Pb
inwhich the projectile and target differ significantly in mass, a
USETARGET calculation requires a substantially denser integration
grid than is required for USEPROJECTILE, however if the USECORE
option is selected, essentially the same Cross sections will te
found in both cases.

The spectroscopic amplitudes for the two bound states may ke
entered with the keywords SPAMF and SPAMT. These amplitudes will
Lte squared and multiplied into tke cross sections. The default
values are unity. Alternatively the spectroscopic factors (the
squares of the amplitudes) may be directly entered using the
keywords SPFACP and SPFACT. The spectroscopic factors must be
positive.

Potential parameters must be entered for each of the two bound
states and the two scattering states. The potentials are defined
when the bound state or scattering state is to be computed; the
same keywords are reused to define the potentials in each of the
four states. Each of these four two-body states consists of two
particles that are reterred to as the "projectile" and "target"
(not to be confused with the projectile bound state and target
bound state). In the scattering states these words have their
normal meanings; for the bound states the exchanged particie (X) is
always the "projectile". The potential parameters are defined in
Sec. IV-B. The laboratory energy correspording to the outgoing
scattering energy is used for the outgoing potential parameters so
that the same keyword values will give slightly different poten-
tials in the incoming and outgoing channels if an enerqgy dependance
is specified.

If a given V or TAU is defined in a channel, then its associ-
ated R (or RO) and A must also be defined. At the beginning of
input for each chamnnel, all V's and TAU's are set to 0 and all R's
and A's are undefined. However, potential parameters will be
retained (if they are not overriden) from one bound state to the
other and from one scattering state to the other. They will not be
retained from bound states to scattering states or vice-versa. The
same rules apply to RC and kECO, one of which must be defined for
the bound states if both 7Zp and 7t are nonzero. If both RC and RCO
are undefined for the scattering states, the Coulomb potential of
two uniform spheres (page 36) will be used.

At present spin-orbit forces may not be used in the scattering
states of DWBA calculations.
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Normally the binding energy (cluster separation energy) of the
bound states will be computed by Ptolemy from the information in
the REACTION specification. 1If it is desired to override this
bound state energy, one may use the "E" keyword to enter the bound
state energy along with the bound state potential. The energy is
given in MeV and must be negative for bound states. The "E"
keyword may also be used in the scattering state descriptions in
which case it specifies the c.m. energy of the state. It will then
override the c.m. energy determined from the ELAB keyword or from
ELAB combined with the Q value depending on the channel. One may
use the E*P or E*T keywords to ernter the excitation energy of the
projectile or target. Use of FITE (page 38) in DWBA calculations
may result in tound state energies (and hence Q-values) that are
significantly different from the values determined fror the
REACTION specification. The default is FITV.

B - The Integration Grid

The Ptolemy integration grid is constructed by a rather elabo-
rate set of subroutines consisting of some 1100 Fortran source
cards. The construction is fairly automatic and is designed to
place the integration points where the integrand is largest.
Ideally the user would not have to intervene in this process and
would only have to tell the processor the desired accuracy of the
final results (the differential cross sections). Unfortunately the
subroutine is less than perfect and the user must have some under-
standing of what the subroutine does. This section describes most
of the parameters that control the grid construction. The novice
user of Ptolemy need not be concerned with the details of this
section since the EARAMETERSET keyword described in the following
section can be used to choose complete sets of grid-construction
parameters. As is described in the following section, these param-
eters have been tuned for specific types of calculations; they may
not be adequate for quite different types of calculations, and the
convergence of the computed cross sections should be checked by
repeating such calculations with a different set of parareters.

The Ptolemy integration grid is based on the three variables
DIF, SUM, and PHI:

DIF = Ri - Rout ,
SUM = (Ri + Rout)/2 ,
PHI = angle between Ri and Rout.

Here Ri and Rout are the radial variables in the incoming and
outgoing elastic channels. The form factor is first integrated
over PHI. This results in a quantity that, for fixed values of
DIF, is a smoothly varying function of SUM. However the scattering
wavefunctions are often rapidly varying functions of SUM. There-
fore the form factor is computed on a rather coarse grid of SUM
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values and interpolated to a fine grid for integration with the
scattering wavefunctions. The numbers of points in each of the
grids on which the form factor is computed are specified by the
keywords NPSUM, NPDIF, and NPPHI, respectively. These numbers may
have any value between 1 and 2000; typical values will be ﬁound in
Table III below. The number of points in the SUM integratiomn grid
is specified by the keyword SUMPOINTS which gives the number of
pcints per average wavelength in the entrance and exit channel. 1In
this manner, the grid automatically becomes denser as the
tombarding energy is increased; it is our experience that the other
three grids (controlled by NPDIF, NPSUM and NPPHI) need not become
denser as the bombarding energy increases. The same three-dimen-
sional grid is used for all values of Li, Lout and Lx.

The keyword DWCUTOFF is used in the construction of the inte-
gration grids. DWCUTOFE specifies in a relative sense the smallest
integrand (Ri * scattering wave * bound state * potential * bound
Sstate * scattering wave * Rout) to include in the grid. *If SEhie
integrand at a point (Ri,Rout,PHI) is smaller than DWCUTOFF tinmes
the largest value of the integrand encountered, that point will not
te included in the grid.

The lower and upper limits of the SUM grid are determined as
the values of SUM for which the integrand has fallen (in a relative
sense) beneath DWCUTIOFF at DIF = PHI = 0. The scattering wavefurc-
tions for L = LMIN are used when finding the lower limit of SUM
while the wavefunctions for L = Lcritical are used for the upper
limit. These two limits may be overriden by using the SUMMIN
and/or SUMMAX keywords to give values (in fm) of the lower and
upper limits.

The SUM grid points are mapped into the interval (SUMMIN,
SUMMAX) in a manner that clusters them about a "pidpoint." This
midpoint is at present chosen to be the expectation value of SUM
(veighted by the integrand for L = Lcritical) for DIF = PHI = 0.
The value of tke "midpoint" may be overridden with the keyword
SUMMID or it may be multiplied by a factor specified by the MIDMULT
keyword, however the resulting value will always be constrained to
be not greater than the average of SUMMIN and SUMMAX.

The form of mapping used for the SUM grid may be controlled by
the MAPSUM keyword which may have one of the follcwinc values:

- linear mapping with no compression.

- cubic mapping with Sinh compression.

= rgtional mapping with Sinh compression (default).
- linear mapping with Sinh compression.

w2 o

§UMMAP = 2 gives the best results in the cases so far examined and
is the default. The degree of compression in mappings 1-3 is

gontrolled by the GAMMASUM keyword. Suitable values are indicated
in Table III below.
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The DIF grid limits are determined by the values of DIF for
which the form factor becomes smaller in a relative sense than
DHCUTOFF. Initially these limits are chosen serarately for each of
the NPSUM values of SUM. Each DIF grid is also mapped about a
"midpoint" which is chosen to be the location of the maximum of the
form factor for the fixed value of SUM (and PHI = 0). Since the
automatic choice of the DIF limits and midpoints seems always to be
successful, no keywords are provided to override these values. The
keyword MAPDIF is used to choose the DIF mapping and has the same
meanings as the MAPSUM keyword. The best value in the cases
studied is 1 which is the default. The keyword GAMMADIF specifies
the degree of compression used in the mapping.

To allow interpolation in the SUM variable, the DIF grid
points must be smoothly varying functions of SUM. The procedure
outlined in the previous paragraph does not necessarily produce
such a grid. Therefore low-order polynomials in SUM are fitted to
the families of DIF points that are choosen above. These polyno-
mials are then used to generate the DIF points that are actually
used in the calculation. The order of these interpolating polyno-
mials may be specified by the VPCLYORDER keyword; the default is 3
which is almost always adequate. (The error message

WINVALID VMIN, VMID, VMAX ...."

usually means that VPOLYORDER should be increased, although the
cross section values are often only slightly affected by this
€rror.)

The PHI maps are individually chosen for each value of SUM and
DIF. The minimum PHI is always 0 and the maximum is determined as
the point at which the form factor falls in a relative sense
beneath DWCUTOFF. For heavy ion reactions this is usually a small
angle [Cos(PHI) > .599]. The PHI map 1is a linear map in the vari-
able Cos (PHI) .

The keywords LMIN and LMAX, or LMINMUIT, LMINSUB, LMAXMOLT,
and LMAXADD determin the range of L-values for which the transfer
amplitudes are computed. These keywords are explained on page 38,
and reasonable values may be found in Table III below. The Leri-
tical used in the formulas on page 38 is the average of the
critical L-values in the inccming and outgoing channels.

Not all radial integrals used in computing the differential
cross sections need be explicitly computed by Ptolenmy. Ptolemy
will interpolate between computed values and extrapolate beyond the
largest value of L for which the radial integrals are computed.

The keyword LSTEP determins which radial integrals are to be
computed. The radial integrals for
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Lout = LMIN, LMIN+LSTEP, LMIN+2*LSTEP, ...,

(where the sequence stops at or before LMAX) will be computed. The
radial integrals for all Lx and 1i associated with these Lout's
will be computed. The remaining radial integrals for LMIN < Lout
< LMAX will then be found by interpolation using continued frac-
tions. The default value of LSTEP is 1 which causes all radial
integrals from LMIN to LMAX to be computed explicitly.

In addit ion Ptolemy will pick an Lmax' > LMAX such that radial
integrals for Li, Lout > Lmax' are negligible. The radial inte-
grals for LMAX < Li, Lout < Lmax' will be found by extrapolation.
The extrapolating function used is of Woods-Saxon form in L. Thus
LMAX must be sufficently beyond the L-window for such a shape to be
an adegquate representation of the radial integrals. The keyword
MAXLEXTRAPOLATION may be used to limit or completely suppress the
extrapolation to L > LMAX. It specifies the maximum allowed
Lmax'-LMAX. If it is set to 0, no extrapolation will occur. The
default value is 100. '

Since no extrapolation to Li, Lout < LMIN is made, LMIN must
be small enough to include all important radial integrals. Care
should be taken to avoid specifying too small a value of LMIN since
the radial integrals for small Li and Lout are small due to exten-
sive cancellations of the integrand viewed as a function of
Ri+Rout. In practice these cancellations are hard to reproduce
without using a large number of Gauss points and the computed
radial integrals may be much larger than they should be. Thus a
more accurate solution is often obtained by totally excluding inte-
grals whose contributions are very small but which are hard to
calculate accurately.

For a given reaction there will usually be several possible
values of the transfered orbital angular momentum:

Lx = Lout - Li = J(projectile) - J(target) .

Ptolemy will compute the radial integrals for all possible values
cf Lx and add the resulting cross sections together with the appro-
priate Racah coefficients. If only one value of Lx is possible the
resulting cross section will still be weighted by the Racah coeffi-
cient. If it is desired to have results for only one value of LX,
the keyword LX may be used to specify the desired value.

The computation of the two-body wavefunctions (both bound and
scattering states) may be controlled with the ASYMPTOPIA and
STEPSIZE or STEPSPER keywords. These keywords are defined on page
39. ASYMPTOPIA and STEPSIZE or STEPSPER may be respecified for
each of the four two-particle states; if they are not reentered,
the value last entered is used.

_The value of ASYMPTOPIA in effect when the bound states are
specified is the largest value cf Rp or Rt (the radial coordinates
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of the projectile and target bound-state wavefunctions) at which
the bound-state wave functions will be found and thus must be large
enough to satisfy the needs of the integration grid. The largest
values of Rp and Rt used by the integration grid are printed in the
summary of the grid. f

The largest value of Ri and Rout (the scattering variables)
will automatically be chosen to be large enough to satisfy the
needs of the integration grid. However it will never be smaller
than the value of ASYMPTOPIA in effect at the time cf input of the
optical potentials. Therefor since, as has just been explained, a
large ASYMPTOPIA is often needed for tke bound-state wave func-
tions, substantial core savings may be realized by reducing
ASYMPTOPIA to as small a value as is physically reasonable for the
scattering states; it will then ke automatically increased to the
required value.

The keyword PARAMETERSET (page 40) may be used to select
standard groups of grid setting parameters. Table ITI gives the
PARAMETERSET names and the associated values that are suitable for
transfer calculations. Since the PARAMETEESET groups of Table III
define values of ASYMPTOPIA and STEPSPER that are to be used in the
two-body states, the PARAMETERSET keyword should precede the defi-
nitions of the two-body states. The CA60A and CA60B PARAMETERSET
names are appropriate for two-nucleon transfer reactions initiated
by 160 on Ca near 60 MeV. The PBE100A, PB100B, and PB100C
PARAMETERSET names are designed for single-nucleon 160 on Pb reac-
tions near the Coulomb barrier; at bombarding energies of several
hundred MeV, larger values of LSTEP may be used. The ALPHA1,
ALPHA2 and ALPHA3 sets were designed for (!0, 12C) reactions on
targets around 2%Mg.

Table III shows that as one increases the numbers of grid
points, one should also reduce DWCUTCFF so as to include more of
the integrand in the computation. This reduction in turn means
that ASYMPTOPIA may have to be made larger. The larger intervals
that result from the smaller DWCUTOFF will also result in the Gauss
points being spread out further so that the same number of points
will give reduced accuracy. The ALPHAL sets have significantly
larger NPSUM and NPDIF values than the other sets. These are due
to the facts that the alpha-core bound state wavefunctions have a
large number of nodes, and that the DIF grids for alpha transfer
extend further than for than for one- and two-nucleon transfer.

It is strongly suggested that for each substantially new
problem, the user make calculations with several different sets of
grid parameters to verify that convergence has been achieved. Many
nodes in the bound-state wavefunctions, a strong dependence on L
(such as is obtained with surface transparent potentials) of the
elastic scattering wavefunctions, poorly matched reactions, and
transfers of heavy clusters are all examples of cases in which
modifications of tke parameter sets may be necessary.
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values for
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DWBA transfer

calculations.

The first col

umn gives the default values.

Keyword Default CA60A CA60B PB100A PB100B PB100C
LSTEP 1 3 2 5 4 3
DWCUTOFF 10-3 10-2 10-3 10-3 3%10—3 10-4
SUMPOINTS 6. 6. 6. 2585 3. 325
NPSUM 15 10 15 10 15 20
NPDIF 10 10 13 8 10 14
NPPHI 10 10 12 10 12 16
LMINSUB 20 10 15 12 16 20
LMINMULT .6 .6 58 .86 .78 .70
LMAXADD 30 15 20 30 35 40
LMAXMULT %6 1.5 el i 1.8 2.0
GAMMASUM 5is 5 5.. 10=3 103 10-3
GAMMADIF 5. 5. 5. 3. 35 3.
ASYMPTOPIA 20 20 25 45 50 55
STEPSPER none 12 20 8 12 16

Keyword ALPHA1 ALPHA2 ALPHA3

LSTEP 2 1 1

DWCUTOFF 10-3 10—+ 10-5

SUMPOINTS 6. 7. 8.

NPSUM 40 50 70

NPDIF 25 30 35

NPPHI 12 14 16

LMINSUB 10 15 20

LMINMULT .6 -5 )

LMAXADD 15 20 25

LMAXMULT =5 ol 2.0

GAMMASUM 3 3ia 3is

GAMMADIF 5 5'e 5l

ASYMPTOPIA 20 25 30

STEPSPER 12 20 25

D - Saving Time and Core with SAVEHS and USEHS

Almost all of the time in a large DWBA calculation is devoted

to the form factor integral:

H(Ri,RKout) = Integral d(PHI)

(B.S.

Veff B.S.)



VII Finite Range DWBA for Transfer Reactions 71

These quantities are independent of both the optical potentials and
the scattering energy. Most DWBA studies are principally concerned
with the effects of variations in the optical potentials. Thus it
is reasonable to save the computed H's in a dataset for reuse with
different optical potentials. If a study is being made at a number
of relativly close energies, time can also be saved by making one
large calculation containing all of the orbital angular momenta
needed for all of the energies, and then in subsequent jobs using
subsets of the resulting dataset. Ptolemy provides two keywords,
SAVEHS and USEHS, to allow the form-factor integrals to be saved.

The SAVEHS keyword is used to initiate the saving of the inte-
grals over PHI of the form factor. These integrals may then be
reused in later calculations with different optical potentials at a
considerable saving in CPU time. The SAVEHS keyword must be
entered before the first semi-colon and should be entered after the
HEADER and REACTION keywords if they are used. If SAVEHS is used
the Fortran file (DD name) FTO1F001 must be defined (see Appendix
C). ‘

The USEHS keyword is used to indicate that the H-integrals
saved in a previous calculation with the SAVEHS keyword are to be
reused. USEHS must be entered before the first semicolon. If it
is used, the REACTION, LSTEP and all grid-setting keywords should
not te specified again. The bound state potentials must not be
entered; rather the definitions of the new optical potentials
should directly follow the USEHS keyword. These definitions are
then followed by the final semicolon indicating that the DWBA
calculation is to begin. Thus a typical USEHS run bhas the form

USEHS
INCCMING potential definition ;
OUTGCING potential definition ;

RETURN

If ELAB, LMIN, and/or LMAX are not specified, the SAVEHS
values will be used. However new values of these parameters may be
specified in the USEHS run. If different values are to be speci-
fied; they must be given after the USEHS keyword. If a different
LMIN is specified, the user must insure that it was one of the
values explicitly computed in the SAVEHS run [i.e. that LMIN =
LMIN(SAVEHS) + n*LSTEP]. If a new value of ELAB is specified, the
SUM grid will not be the optimal grid since it was chosen for a
different energy. In cases in which it is desired to do USEHS rumns
at different energies, the SAVEHS run should be made at the maximum
energy to be used. It should be rade with more SUM points than
would be necessary for a calculation at a single energy. Also the
automatic choice of LMIN will have to be reduced.

Since the large arrays used for the angular transforms in the
form-factor integral do not need to be constructed for USEHS calcu-
lations, there are also substantial core savings in USEHS jobs.
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All but the largest USEHS calculations can be made within the
Argonne express limits of 250K and two minutes of /195 CPU and wait
time. It is suggested that during a study of a given set of reac-
tions, a SAVEHS run be made for each different reaction, and the
results stored on the on-line disks. The effects of different
optical potentials may then be quickly and cheaply studied for all
the reactions using USEHS jobs. When the study is complete, the
SAVEHS datasets may be copied to a tape for long-term storage.

As each of the bourd states and elastic scattering states are
entered, a summary of the two-body channel is printed; the format
of this summary has been described in Sec. IV-E. When the fifth
semicolon is entered, a summary of the reaction is printed. This
summary lists the nuclei involved, the bound-state properties, and
the spectroscopic factors. The Q-value of the reaction is also
printed. If the Q-value or the bound-state or outgoing scattering
energies were explicitly entered by the user, then the differences
of the bound-state energies and of the scattering energies may not
be the same, or they may not be equal to the Q-value. Under these
circumstances an appropriate warning message is printed, hLowever
the calculation proceeds with the bound-state and scattering ener-
gies that were listed in the previous summaries. After the
tound-state properties, the content of the effective interaction,
as determined by one of the keywords NUCONLY, JSESIMPLECOUL,
USFCOULOMB, or USECORE, is listed.

The range of I's and the increment of L for which the radial
integrals will be explicitly computed is then listed. The range of
transfered orbital angular momenta is also given.

A several-line summary of the three-dimensional integration
grid is then given. The lines give the number of Gauss points used
for, and the extent of, each dimension of the grid. The entry
under "“NUM. PTS." for (RI+RO)/2 gives the number of Gauss points
used in the integrals involving the wavefunctions, and is deter-
miped by the value of SUMPOINIS; the form factors are found at
these points by interpolation. The number of points in the
(RI+KOQ) /2 grid at which the form factors are evaluated (NPSUM) is

given in parentheses at the end of the (RI+RO)/2 line. The warning
message

INVALID VMIN, VMID, VMAX ...

may precede the integration grid summary; it is explained in Sec.
VII-B. Two lines of the form

MAXIMUM R'S USED FOR ...
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give the maximum radial coordinate values for which each of the
bound-state and scattering-state wavefunctions will be used in the
three-dimensional integrals. The corresponding values of
ASYMPTOPIA may be reduced to approximately 5 fm greater than these
values in future calculations. If the bound state ASYMPTOPIA prove
to be limiting factors in the grid construction, the warmning
message

FRROR ... BOUND STATE WAVEFUNCTIONS NEEDED ....
IN FUTORE RUNS INCREASE ASYMPTOPIR TO ....

will be printed. The calculation should be repeated with an
increased value of ASYMPTOPIA for the bound states since thke radial
integrals computed with the smaller grid may not be accurate. The
increased value should be at least 5 fm larger than the values
printed in the warning message.

If (as is suggested) PRINT=2 has been specified, one or more
rages labeled "COMPUTATION OF RADIAL INTEGRALS" will next be
printed. These pages contain only those radial integrals that are
explicitly computed; the radial integrals for even Lout are printed
first. Three columns give the real and imaginary parts and the
magnitude of the radial integrals. These are followed by two
columns labeled "CANCELLATIONS;" the second of which is not pres-
ently used. The first column gives an indication of the numerical
cancellations that occurred in the d(Ri) d(Ro) integral and is
defined as

Integral d(RKi,Ro) Ri Ro | f(out) H f(in) | /
| Integral d(Fi,Ro) Ri Ro f(out) H f(in) |

where the denominator is just the radial integral. The entries in
this column are usually quite large (>100) for the smaller values
of L, since these radial integrals are small by virtue of large
cancellations. However the values for L 2> Lcrit are usually less
than S, indicating that there was not much difficulty associated
with these radial integrals. If all of the entries in this column
are greater than 10, then the reaction is in some way poorly
matched, and the convergence of the computed cross sections should
be carefully checked.

The page labeled WINTERPOLATICN AND EXTRAPOLATION IN L" gives
a summary of the extrapolation of the radial integrals from LMAX to
Imax'. The value of Lmax' is printed in the line "MAXIMUM LO USED
...". This line may be preceded or followed by a number of warning
or error messages indicating difficulties in the extrapolation to
Lmax'. These difficulties are usually associated with the fact
that some (Lx, Lin-Lout) combinations are poorly matched and the
computed radial integrals contain large errors. If the errors are
large enough, the computed radial integrals will not have the
correct asymptotic form, and it will be impossible to fit the
extrapolating function to them. If the extrapolated radial inte-
grals will have a negligible effect on the computed differential
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cross sections, then these error messages may be ignored. An
indication of this may be found in the table labeled "SUMMARY OF
EXTRAPOLATION PARAMETERS" that is printed at the end of this page.
The (Lx, Lin-Lout) combinations that could not be extrapolated have
zeros in the columns that give the extrapolation parameters. The
columns labeled "PFAK" give the Lout for which the radial integrals
with the printed values of Lx and Lin-Lout have their maximum
magnitude and that maximum magnitude. If the maximum magnitude is
small compared to other maximum magnitudes, then the extrapolated
values (which are usually at least a factor 10 smaller) are prob-
ably negligible and the failure to be able to extrapolate may be
safely ignored.

The pages labeled "REACTION AND ELASTIC ' PARTIML -.:sU sgivefall
of the radial integrals and the elastic S-matix elements for LMIN
< L < LMAX. The format of these pages was explained in Sec. VI-C.

Finally the cross sections are given on the pages labeled
WCOMPUTATION OF CROSS SECTIONS." Most of the entries on these
pages were also explained in Sec. VI-C, and only the differences
will be given here. The colurmn labeled "% FROM L > LMAX" gives (as
a percentage) the contribution to the cross section from the radial
integrals for LMAX < L < Lmax'. Our experience is that this
contribution is usually accurate to somewhat better than 10%. Thus
if at a given angle the entry is 5%, one may assume that the extra-
polation procedure introduced an error of less than 0.5% to the
differential cross section. If more than one Lx can contribute to
the reaction, there will be columns giving the differential cross
cection for each Lx; the cross section in the second column is the
sum of these partial cross sections. Of course the spectroscopic
factors are included in all cross sections.
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VIII - Control Keywords

In this section we describe some of the control keywords that
are available in Ptolemy. These keywords may generally be placed
anywhere in the Ptolemy input and they usually cause some sort of
immediate action; they are not followed by a semi-colon. These
keywords are listed more or less in decreasing order of interest;
all of them except RETURN are optional.

The RETURN keyword should ke used as the last keyword in every
Ptolemy job. It causes allocator statistics to be printed and then
returns control to the operating system.

The HEADER keyword may be used to enter a header that will be
printed on the top of most pages of the Ptolemy output. Tne header
will consist of the remainder of the input line beginning with the
first alphanumeric following the HEADER keyword. 1In addition the
REACTION specification (if it is entered) and the laboratory energy
will always be part of the header.

The KEEP keyword is used to keep Ptolemy results in a form
suitable for later recovery with the Speakeasy KEPT command. A
Speakeasy KEEP dataset must be allocated to the file (DD name)
MYKEEP if the KEEP keyword is to be used. Appendix C shows the JCL
required to make such a dataset and to include it in the Ptolemy
job. KEEP must be foilowed by two names: the first is the Ptolemy
name of the item to be kept and the second is the name under which
it is to be saved in the dataset. This second name must be
different from all other names already in the dataset or eise the
new object will replace the previously kept object. The following
is a 1ist of the Ptolemy names of the objects the user is most
likely to want to keep:

ANGLEGRID - A 3-element array containing ANGLESTEP, ANGLEMIN
and ANGLEMAX.

CROSSSEC - The differential cross section on the (ANGLEMIN,
ANGLESTEP, ANGLEMAX) grid. For DWBA calculations this
contains the reaction cross section. For stand-alone
elastic scattering it contains the elastic differential
cross sections. In both cases it is in mb/sr.

TORUTHERFORD - The ratio of the elastic scattering differen-
tial cross section to the Rutherford cross section.
This array is produced only in stand-alone elastic scat-
tering.

LXCROSSSECTION - A Num(angles) X Num(Lx) array containing the
DWBA cross sections for each Lx (summed over Mx) at each

angle.
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MXCROSSSECTION - A Num(angles) X Num(Li,Lx) array containing
the DWBA cross sections for each (Lx, Mx) at each angle.
The order of the columns is

(Lx,Mx) = (Lxmin,0), (Lxmin,1), ..., (Lxmin,Lxmin),
(Lxnin+1,0), <<, (Lxmax,Lxmax) .

This array is available to KEEP only if the keyword
SAVEMXCROSS (see below) has been entered.

IMAG and IPHASE - The magnitude and phase of the radial inte-
grals. These two objects are each Num(L) X Num(Li,Lx)
arrays. The arrangement of the columns is such that
I(Lx, Li, Lout) is indexed as IMAG(3,k) and IPHASE(J,k)

with
j = Lout-LMIN+1
k = [ (Lx+Lxmin+1) (Lx-Lxmin) + Lx+Li-Lout }/2 + 1
B - A Num(angles) X Num(lLi,Lx) complex array containing the

B(Lx, Mx, theta) of Eq II.XXX Or II1.56 for each (Lx,Hx)
at each angle. The columns have the same order as for
MXCKROSSSECTION. This array is available for KEEP only
if the SAVEB keyword (see below) has been entered.
SIN - The elastic S-matrix elements in the incoming channel.
SOUT - The elastic S-matrix elements in the outgoing channel.

WAVER, WAVEI - The real and imaginary parts of the most
recently computed elastic scattering wavefunction.

PHIn - The n'th bound state wavefunction.

HEADER - A character array (up to 65 characters) containing
the HEADER.

REACTION - A character array (up to 45 characters) containing
the REACTION or CHANNEL specification.

ELAB - A scalar with the laboratory energy.

The following symbols were used in the above definitions of
the objects for the KEEP command:

Lxmax Maximum Lx (transfered L)
Lxmin Minimum Lx

Num (angles) Number of angles

Num (L) Lmax'-LMIN+1

Num (Lx) Lxmax-Lxmin+1

Num (Li,Lx) [ (Lxmax+Lxmin+2) (Lxmax-Lxmin+1) }J/2 (This
expression does not take into account abnormal
parity restrictions but it is always the
correct expression to use.)
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The SAVEMXCROSS keyword may be entered to cause the DWBA cross
sections for every (Lx, Mx) and angle to be saved. The SAVEB
keyword may be entered to cause the B(Lx, Mx, theta) to be saved
for every (Lx,Mx) and angle. The resulting objects (MXCKOSSSECTION
and B) may then be stored using the KEEP command. The defaults are
NOSAVEMXCROSS and NOSAVEB.

The WRITENS command is an alternative method of storing
objects that are in the Ptolemy allocator for use by other
prograns. The command is followed by the name or numnber of an
object in the allocator. The object will be written on Fortran
unit 15 using a (1X, 4G17.8) format. TIf this command is used, a DD
card defining DD name FT15F001 to be a card-image dataset must be
part of the JCL used to invoke Ptolemy. The names and structures
of the available objects are given in the description of the KEEP
command above, however two-dimensional objects will be written as
the transpose of the Speakeasy formats given above.

The NEWPAGE keyword may be used to cause subsequent Ptolemy
output to begin on a new page. It will probably be used only if
ceveral stand-alone two-body calculations are being done.

The KEYWORDS keyword may be used at any time to cause a
listing of the current settings of all data-entering and option-
choosing keywords. It is suggested that it be used at the end of
all runs to provide a verification of the parameters and optiomns in
effect. The LISTKEYS keyword will 1list the names of all valid
keywords. It is useful in TSO applications to check the spelling

of a keyword.

The UNDEFINE keyword may be used to set the status of a
keyword to "undefined." It is followed by the name of the keyword
that is to be undefined. The most likely use of UNDEFINE is to
undefine a potential radius (R, RI, etc.) during stand-alone calcu-
lations so that it will automatically be computed from the
corresponding radius parameter (RO, RI0, etc.) the next time it is
needed. One may also want to undefine STEPSPER after the use of
PARAMETERSET, so that a specific STEPSIZE may be entered.

The NSCATALOG keyword may be used at any time to provide a
1ist of the names and sizes of all currently defined objects in the
allocator. It will also give the NSSTATUS output.

The NSSTATUS keyword will cause a short summary of the allo-
cator status to be printed. This summary will show the allocator
size, its current in-use size and the peak in-use size. This
summary is automatically printed at the end of all Ptolemy jobs.

The SIZE keyword may be used to specify the size of the allo-
cator (the Ptolemy work area). If the SIZE value is given as a
positive number, it is the size in bytes of the allocator. It is
usually more convenient to enter a negative number which is inter-
preted as the number of bytes of core to leave for other purposes
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(such as I/0 buffers); the remainder of the available core is used
for the allocator. The default value of SIZE is -5000. This
default is generally adeguate but may be made closer to zero 1 £} no
KEEP operations are anticipated. If it is to be used, the SIZE
keyword should be on the first line of Ptolemy input.

The DUMP or NSDUMP keywords may be used to print an object in
the allocator. They are followed by the name or number of the
okject to be printed.

The RESET keyword may be used to cause Ptolemy to be set back
to its initial status. The complete allocator is cleared and all
keywords are set to their default values. However the allocator
size may not be changed after a RESET. The use of RESET allows
several independent calculations to be made in one Jjob. - ITf dt As
desired to do a SAVEHS calculation and immediately follow it with
several USEHS calculations, each USEHS step should be preceded with
a RESET.

The CLEAR keyword causes the allocator to be cleared. All
objects are removed from the allocator. However none of the
keyword settings are changed. The size of the allocator may not be
respecified after a CLEAR command.

The COPY keyword may be used to copy the data in an object in
the allocator into a second object. The form of the command is

COPY fromiiame toname

where "fromname" must be the name of an object already in the allo-
cator. If "toname" already exists in the allocator and is the same
size as "fromname," the data in "fromname" will be copied into
"toname." Otherwise "toname" will be created (or changed to have
the correct size) and then the copy will occur. 1In all cases
"fromname" is not changed. The COPY command may be used to "fool"
Ptolemy into using a different potential or wavefunction in a
subsequent part of the calculation.

The RENAME command is used to change the name of an object in
the "allocator: Its forum is

RENAME oldname newname

where "oldname" must be the name of an object in the allocator.
The name of this object will be changed to "newname." There must
not be another object with the name "newname" already in the allo-
cator; if there is, inconsistent results may occur.

The FREE command is used to delete an object from the allo-
cator and thus make its space available for other objects. The
command is followed by the name of the object to be freed. If the
object does not exist, a warning will be printed and processing
will continue with the next input line.
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In the WRITENS, COPY, RENAME and FREE commands the first
ocbject name may be replaced with the actual number of the object in
the allocator. However this practice is not recommended since it
is difficult to predict the numbers of the objects.

An object may be added to or changed in the allocator by means
of the ALLOCATE command. This command has the form

ALLOCATE name list-of-numbers

where "name" will be the name of the object in the allocator. The
number of elements in the list-of-numbers determins the length of
the object. The numbers may be in ary format, with as many or as
few as is desired per input line. If an object with the nanme
"pame" already exists, it is replaced with the new object as
defined by the ALLCCATE command. In this manner one may read in
arbitrary bound-state wavefunctions after Ptolemy has computed the
tound-state wavefunctions for a Woods-Saxon potential. The new
wavefunctions will then be used in a subseguent DWBA calculation.

The BIMULT keyword causes two dbjects (they may be the same
object) to be multiplied together. The form of the command 1is

BIMULT namel name2

where "namel1" and "name2" are the names of the two arrays to be
nultiplied together. They must ke of the same length. They will
te multipied together in an element-ty-element fashion and the
resulting array will ke stored in a new unnamed object in the allo-
cator. 1Its number will be printed in the output. The numbers of
the input arrays may be used inplace of their names.

The keyword NUMEKNUM may be used to compute the matrix element
between two wavefunctions of a power of r. The form of the command
15

NUMRNUM namel power name2
where "name1" and "name2" are the names (or numbers) of two objects
in the allocator. They must be of the same length and must be
wavefunctions that were computed with the present value of
STEPSIZE. The integer "power" is the power of r that 1s to be
included in the integral. The integral

Integral(0 to ASYMPTCPIA) dr r**power namel name2

will be computed and printed.

The keyword NRNLIMS may be used to compute the partial matrix
element of a power of r. The form of the command is

NRNLIMS namel power name2 start stop
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where "namel1", "name2," and "power" are the same as for NUMRNUM:
The range of the integral is specified by "start" and "stop" whkich
are specified in fm.

The keyword PRINT may be used to control the amount of
printing that Ptolemy does. It is followed by a five-digit integer
that indicates the amount of printing that is to occur. Each digit
controls different items of the printed output. The larger the
digit, the more information that is printed. The default value is
PRINT = 10001 which results in summaries of the input, the radial
integral phases and magnitudes and the cross sections being
printed. If the five-digit number is writen as PRINT = TMCXI, the
significance of the digits is:

I = 0 - only print the differential cross sections
and final fit values.

1 - (Default) - Print summaries of input,
magnitudes and phases of the radial inte-
grals and elastic S-matrices in addition to
output for PRINT=0. For fits the ioitiad
and fipnal values are shown along with a
summary of the path followed by the fitter.

2 - print radial integrals as they are computed
and give estimates of their cancellations.
This option is strongly recommended as
large cancellations are an indication that
the convergence should be checked. The
singular values are printed by the QUAVER
fitter.

3 - print debugging information.

v

X = 1 - The WKB amplitudes used to find the crit-
ical L are printed for each L.
2 - Debugging output is printed by the WKB
routine.

C = 1 - Several lines are printed for every chi-
squared function calculation made during
the course of a fit. Debugging output from
the Coulomb excitation integrals is
printed. Work arrays are not freed
following the radial integral computation.

2 - Convergence to the bound-state eigenvalue
is printed.

4 - Debugging output from the L-interpolation
is printed.

M = 1 - The elastic S-matrix element is printed
every time a scattering wavefunction is
computed.

4 - Debugging output is produced by the elastic
wavefunction routine.
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=]
[}

-
|

(Default) - Show conversion of FIT data to

standard form.

4 - Some debugging output about the transfer
effective interaction is produced.

9 - Enormous amounts of debugging output from

the transfer effective interaction (the end

has never been seen) are produced.

The value of PRINT may be changed at any time to effect subsequent
printing except that in DWBA calculations the value of PERINT that
was in effect at the time of the specification of the outgoing
scattering state will determine the printing of the elastic S-ma-
trices during the computation of the radial integrals.
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Appendix A - List of all Keywords

The following lists contain brief descriptions and default
values for all the Ptolemy keywords. Some of these keywords have
not been discussed in the above text either because they are prima-
rily designed for use in debugging Ptolemy or because it is
doubtful that the average user will need them. They are all
included here for completness. The entry "none" under "Default"
means that the keyword is initially undefined. If it is not
defined in the input and is necessary to the calculation, an error
message will be printed and the job aborted. The entry "none*"
under "Default" means that the keyword is initially undefined, but
if it is not defined in the irnput, an appropriate value will be
found by Ptolemy.

The keywords CROSSSECTION, GRIDSETUP, LINTERPOI, and RADIALINT
are used inplace of the final semicolon to initiate individual
stages of the DWBA calculation and should not be used in standard
calculations. If desired the keywords DWBA or NZRDWBA may be used
before the final semicolon to indicate that a DWBA calculation 1is
to be done but they are not, at present, necessary.

All lengths are specified irn fm and all energies are in MeV.

Reaction-defining Keywords

Keyword Default Meaning

BETA none Nuclear deformation parameter
EETACOULOMB none Coulomb deformation parameter
BELX none B(E,Lx,excitation)
E*i 0 Excitation energy in MeV of nucleus i
(1 = A, B, BIGA, BIGB, or X)
ECH none Incoming c.m. scattering energy in MeV
ELAB none Incoming Laboratory scattering emnergy in MeV
Ji none Intrinsic spin of nucleus 1
(1 = A, B, BIGA, BIGB, or X)
Mi none Mass in AMU of nucleus i
(i = A, B, BIGA, BIGB, or X)
MXCi none Total mass excess in MeV of nucleus i
(i = A, B, BIGA, BIGB, or X)
MXCGi none Ground state mass excess in MeV of nucleus i
(i = 1A, B, BIGA, BIGB, or X)
NUCONLY off Use only the nuclear part of the B.S.
potential in the interaction potential
Q none Q-value in MeV
REACTION none Defines reaction in standard notation
SPAMP 1. Projectile spectroscopic amplitude
SPAMT 1. Target spectroscopic amplitude
SPFACP 1. Projectile spectroscopic factor

SPFACT 1. Target spectroscopic factor
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Reaction-defining Keywords
Keyword Default Meaning

USECORE on Use Coulomb and real nuclear core
corrections in the interaction potential

USECOULOMB off Use Coulomb with core corrections in the
interaction potential

USEPROJECTILE on Use projectile B.S. potential as the
interaction potential

USFSIMPCOUL off Use Coulomb of just one B.S. in the
interaction potential

USETARGET off Use target B.S. potential as the
interaction potential
Zi none Charge of nucleus i

(i = A, B, BIGA, BIGB, or X)

Two-body State Keywords

Keyword Default Meaning

A none Feal W.S. diffuseness

AE 0 AE*Elab is added to A

AESQ 0 AESQ*Elab2 is added to A

AT none Imaginary W.S. diffuseness

AIE 0 AIE*Elat is added to AI

ATIESQ 0 AIFSQ*Elab2 is added to AI

AST none surface absorption diffuseness

ASG none Real spin-orkit diffuseness

ASOI none Imaginary spin orbit diffuseness

CHANNEL none Specifies a two-body charnel.

E none Two-tody c.m. energy in MeV (ELAB or ECH may
be used in stand-alone or fits)

EINVERSE cff Energy-dependant pots are in 1/ELAB

EPOWERS on Energy-dependant pots are in ELAB

E*xp none Projectile excitation energy

EXT none Target excitation energy

J none Total two-body angular momentum

Jp none Total projectile ang. mom. (for spin-orbit)

1 none orbital angular momentum

M none Peduced mass in MeV/c**2

MP none Projectile mass in AMU

MT none Target mass in AMU

NODES none Number of bound state nodes for r > 0

R none Real W.S. radius

RO none Real W.S. radius parameter

ROE 0 POE*Elab is added to RO

ROESQ 0 KOESQ*Elab2 is added to RO

EC none Coulomb radius

RCO none Coulomb radius parameter

RCP none Coulomb radius of projectile
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Keyword Default
RCT none
RCOP none
RCOT none
RI none
RIO none
RIOE 0
KIOESQ 0
RSI none
RSIO none
RSC none
RSO0 none
RSOI none
RSOIO0 none
SP none
SPAM none
Sil nche
TAU 0
TAUI 0
v 0
VE 0
VESQ 0
VI 0
VIE Q
VIESQ 0
VSI 0
VSO 0
VSOOI 0
ZP none
ZzT none
Keyword Default
ACCUEKACY 10—-12
ANGLE MAX S0
ANGLEMIN 0
ANGLESTEP 1
ASYMPTOPIA 20
COULOMBMULT 1.
CATA =
CELTAVK .05
DERIVSTEP 10—6
DWCUTOFF 10-3

FITACCURACY 10-3
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Two-body State Keywords
Meaning

Coulomb radius
Coulomb radius
Coulomb radius
Imaginary ¥W.S. radius

Imaginary W.S. radius parameter
RIOE*Elat is added to RID
RIOESQ*Elab2 is added to
Surface absorption radius
sur face absorption radius
Real spin-orbit radius
Feal spin-orbit radius parameter

Imaginary spin-orbit radius

Imaginary spin-orbit radius parameter
Projectile spin

Channel spectroscopic amplitude

Target spin

Keal S.0. depth relative to real W.S. depth
Imag S.0. depth relative to imag W.S. depth
Real W.S. well depth

VE*Elab is added to V

VESQ*Elak2 is added to V

Imaginary W.S. well depth

VIE*Flab is added to VI

VIESQ*Elab2 is added to VI

surface aksorption strength

Real S.0. well depth

Imaginary S.0. well depth

Projectile charge

Target charge

of target
parameter of projectile
parameter of target

RIO

paramweter

Calculation Keywords
Meaning

Accuracy of bound state convergence

Maximum scattering angle in degrees

Minimum scattering angle in degrees
Scattering angle increment in degrees

Start of asymptotic region

Determins start of Belling expansion

Enters experirental data for a Eig

Bound state search step size

Stepsize for numeric gradient of potentials
Minimum relative integrand to use in DWBA
integral; minimum relative Coulomb amplitude
for excitation

RKequired relative accuracy of optical
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Keyword Default

FITMULTIPLE 5G0
FITRATIO 10—4
GAMMADIE 5
GAMMASUM 1
INELASACC 10—5
LBACK nonex
L MAX nonex
LMAXADD 30
LMAXMULT 1.6
IMIN nonex
LMINMULT 0.6
IMINSUBR 20
LOOKSTEP 250
LSTEP 1
LX none
MAPDIF 1
MAPSUM 2
MAXCOULITER 80
MAXFUNCTIONS 50
MAXITER 10
MAXLEXTRAP 100
MIDMULT 2
NAITKEN uy
NBACK 4
NCOSINE 256
NPCOULOMB 8
NPDIF 10
NPHIADD 4
NPPHI 10
NPSUM 15
NUMRANDOM 0
REINITIALIZ 0
STEPSIZE 44
STEPSPER none
STEP1R 1
STEP1I 1
SUMMAX nonex*

Ptolemy Appendix

Calculation Keywords
Meaning

model parameter fit
Meaning depends on optical model fitter in use
Meaning depends on optical model fitter in use
DIF compression parameter
SUM compressior parameter
Fequired accuracy of Coulomb excitation
LMAX-LBACK is start of L-extrapolation
Maximum scattering partial wave L
LMAX = Max( LMAXADD + Leritican
IMAXMULT*Lcritical )
Minimum scattering partial wave L
LMIN = Min( LMINMULT*Lcritical
Lcritical - LMINSUB )
Number of steps in grid-searching for PHI
Increment of I in radial integral computations
In-between values are found by interpolation.
Exchanged orbital angular momentun
Gauss-point map type for DIF grid
Gauss-point map type for SUM grid
Max iterations for Belling's expansion
Maximum number of chi. sqgr. computationrs
allowed in an optical model fit
Max. number of iterations in bound state
search
Maximum allowed L-extrapolation
SUMMID multiplier
degree of interpolation polynoanial
Num. of backward steps in scattering
wave asymptotic matching
Size of fast-cosine table
Num. points/cycle in Coulomb excitation
Num. of points in DIF grid
Num. of steps to extend PHI grid
Num. of points in PHI grid
Num. of computed points in SUM grid
Num. of random steps for some fitters
Number of iterations between reinitialization
of the fitter (mainly for POWELL6S5)
Step size for solutions of two-body
differential equations
Number of steps per "wavelength" for
solutions of two-body equations.
Starting value for scattering state dif. egn.
Starting value for scattering state dif. eqn.
End of SUM grid

* A value will be computed by the program if one is not given by

the user.
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SUMMID nonex*
SUMMIN none*
SUMPCINTS €
VPOLYORDER 3

List of all Keywords 89

Calculation Keywords
Meaning

Clustering point of SUM grid

Beginning of SUM grid

Num. points/wavelength for SUM grid

order of interpolating poly for DIF grids

Control and Option-selectina Keywords

Keyword Default

ALLOCATE =
BEATCH nonex*
BIMULT =
BOUNDSTATE off
CHECKASYMP off

CLEAR =
CMANGLES on
COMPLEXWAVE on
COPY =
CROSSSECTION off
CAVIDON oftf
DERIVCHECK off
DOASYMPT on
CALILTSO =
DUMP =
DUMPALL =
DUMP2 =
DWBA -
ECHO on
ELASTIC off
FIT off
FITE off
FITMODE 1
FITV on
FREE -
GRIDSETUP off
HEADER =
INCOMING off

Meaning

Enter data into the allocator

Enter batch mode - an error terminates things

Multiply two arrays together

Stand-alone bound state is being entered

Check approach of scattering state to
asymptotic form

Clear allocator of all defined objects

Angle grid is in c.m.

Scattering waves have complex phase

Copy one object in the allocator into another

Entering data for DWBA cross section stage

Use the Davidon variable-metric fitter

Check the analytic chi. sqr. gradients

Use Whittaker bound state asymptotic form

Enter the TSO Command mode

Print an object in the allocator

The entire allocator is printed

Print an integer*2 object in the allocator

DWBA input is being entered

Input lines are printed in the output

Compute cross section in stand-alone scattering

Do an optical model fit and specify the

parameters to be varied

The bound state energy is matched to the
potential

Meaning depends on optical moiel fitter in use

The depth of the real part of the W.S.
well is matched to the bound state energy

Kemove an object from the allocator

Grid setup input is being entered

Defines the header for subsequent pages

The incoming scattering state is being
defined

% 3 value will be computed by the program if one is not given by

the user.
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control and Option-selecting Keywords

Keyword Default Meaning

KEEP = Keep an object for subsequent Speakeasy use
KEYWORDS = List all keywords and their present values
LABANGLES off Angle grid is in laboratory -
LINEAR off Oonly use linear extrapolation in the
bound state search
LISTKEYS = List all keywords
LMCHOL on Use the LMCHOL sum-of-squares minimizer with
MINIM off Use the Fletcher variable-metric fitter
NEWPAGE = Go to new page for output
NOCHECKASYM on Do not check asymptotic form of scattering
solution
NOECHO off Do not print input lines in the output
NOELASTIC on Do not ccmpute cross sections in stand-alone
scattering problems
NOSAVEB on Do not save B(Lx,.MX,angle)
NOSAVEMXCROSS on Do not save (Lx,Mx) cross sections
NRNLIMS = Compute partial overlap of two functions
NSCATALOG = List names of all objects in allocator
NSDUMP = Print an object in the allocator
NSSTATUS = Print allocator statistics
NUMRNUM = Compute overlap of two functions
NZRDWBA off Input is for a nonzero-range DWBA
OUTGOING of £ Input is for the outgoing scattering state
PARAMETERSET none Specify a group of keyword definitions
POWELL65 off Use the Powell 1965 sum-of-squares minimizer
PRINT 10001 controls amount of printing
PRINTFIT = Print present E and V
PRINTWAV = Print last computed wavefunction
PROJECTILE off Projectile B.S. definition is being input
QUADRATIC on Use parabolic extrapolation in B.S. search
QUAVER off Use the QUAVER quasi-Newton fitter
RADIALINT off Input is for radial integration stage
REALWAVE off Real scattering waves for real pots.
RENAME = Change the name of an object in the allocator
RESET = Initialize for a new calculation - allocator

is CLEARed and all keywords set to initial sta

RETUEN = Terminate Ptolemy

ROCORD off Use the ROCORD generalized minimizer
SAVEHS of £ Form factor integrals will be saved
SAVEB off Save the B(Lx,Mx,angle) for KEEP

SAVEMXCROSS off save (Lx,Mx) cross sections for KEEP

SCATTERING off Input is for stand-alone scattering

SIZE -5000 Allocator size in bytes

SKIPASYMP off Do not use Whittaker function as asymptotic
form of B.S. wavefunctions

TARGET off Input is for Target B.S.
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control and Option-selecting Keywords

Keyword Default

TSO nonex*
UNDEFINE -
USEHS off
WRITENS -

WRITESTEP none

Meaning

Operating in interactive mode - errors allow
corrections and retries

Set a keyword to undefined status

Use previously computed form factor integrals

Write an object onto Fortran file 15

Interval (fm) at which wavefunctions are to
be tabulated

Sub-keywords for DATA

The following are keywords that may appear within the
paraentheses that follow the DATA keyword.

Keyword Default

ANGLE =
ANGLESHIFT 0

CHANNEL =
CMANGLE =
CMSIGMA =
ELAB previous
value
ERROR =
LABANGLE =
IABSIGMA =
MBERROR =
PERCENTERR
POLARIZATION
RENOEMALIZA

—

SIGMA =
SIGMATORUTH

WEIGHT 1

Meaning

C.m. angles of the data are being entered
Amount (in degrees) by which the angles

are to be shifted in the laboratory frame
Elastic channel of following data
C.m. angles of data are being entered
C.m. cross sections in mb are being entered
laboratory energy of the data

Errors have same units as data

Lab. angles are being entered

Lab. cross sections in mb are being entered

Data errors are in millibarns

Data errors are in percent

Presently this data is ignored

A quantity that will multiply each experimental
cross section

Data is cross section in mb in ANGLE frame

Data is ratio of cross section to Rutherford
cross section

Each term in the chi-squared sum for the
present data group is multiplied by WEIGHT

% A value will be computed by the program if one is not given by

the usere.
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Appendix B - Core and CPU Iime Estimates

Many Ptolemy calculations can be carried out in the Argonne
Express class limits for the 370/195 of 250K and 2 minutes.
However large calculations may exceed one or both of these limits
and in such cases it is useful to be able to estimate the core and
time reguirements of the job. One method of so doing is to compare
the "Peak Compressed Size" line with the "Allocator Size" line in
the "Allocator Statistics" that are printed at the end of each job.
The difference of these two numbers is the amount by which the
KEGION specified on the JOB card may be reduced in future rums of
cimilar calculations. The Peak Compressed Sizes and CPU times fron
several jobs with varying conditions may also be used to estimate
the needs of other calculations. Such rough estimates will almost
always be adequate for optical model fits and inelastic excitation
which are usually inexpensive jobs.

For large transfer calculations, one may want to use the
following formidable formulas to estimate the job requirements.
New users of Ptolemy should not be frightened by these formulas;

they should simply ignore the rest of this section until they are
forced to consider it.

The core size that should be given in the REGION parameter on
the JOB card is determined by the size of the Ptolemy program and
associated I/0 buffers and by the Peak Compressed Size of the allo-
cator. The first size is at present 90K. The second size is
composed of a number of pieces, not all of which exist at the same
time. The principal requirments (in double-precision words) are:
A. Scattering wave computations:

6*Max[ SUMMAX, ASYMPTOPIA]/STEPSIZE + 10% (LMAX+Lxmax+1)
B. Scattering wave interpolations:
(Lxmax+3.5) *Npsum'*NPDIF

C. Computed radial integrals:
Num (Li,Lx) * (LMAX-LMIN+LSTEP) /LSTEP
D. Form-factor integrands:
NPSUM*NPDIF* (2*%NPPHI+1)
E. Angular-transformation arrays:
(LMAX+Lxmax+1) /2 * { 9

+ Max[Lxmax + Max(LbndP, LbndT, Lxmax), LbndP+LbndT+1 ]
+ Num(Li,Lx)*(Lxmax+1) *[Min (LbndP, LbndT) + 1]}
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F. Elastic S-matrix elements:
4* (LMAX+Lxmax+1)

G. Elastic S-matrix elements for extrapolation:
6*(Lmax'+Lxmax+1)

H. Interpolated and extrapolated radial integrals:
4* (Lmax'-Lmin+1)*Num (Li,LX)

I. Cross sections:
Num(angles) * (4 + Lxmax-Lxmin)

In addition to keywords, the following symbols were used in the
above:

Lxmax = Maximum Lx (transfered L);

Lxmin = Minimum LXx;

Lmax' = Maximum L for extrapolation;

LbndP = Projectile bound-state orbital angular momentum;
LbndT = Target bound-state orbital angular momentum;
Num(Li,Lx) = [(Lxmax+Lxmin+2)(Lxmax—Lxmin+1)]/2 s

Npsum' = SUMPOINTS* (SUMMAX-SUMMIN) /[ average wavelength] ;

Num (angles) = (ANGLEMAX-ANGLEMIN) /ANGLESTEP + it

Using the above pieces, the allocator requirement for either a
normal or a SAVEHS transfer calculation is estimated as:

Max[ A+B+C+D+E+F, F+G+H+I] + 500 ,
while for a USEHS calculation the estimate is:
Max[ A+B+C+F, F+G+H+I] + 500 .

In both cases the estimates are in double precision words; one
should divide by 128 to convert to kilobytes (K).

The time estimate for a standard or SAVEHS run on the 370/195
is given in the following formula. Timings on other computers will
be approximately proportional to this estimate. Wo estimate is
given for USEHS runs since they are so fast.

Time (seconds) = 10-7 * NPSUM*NPDIF*NPPHI *
[ (LMAX2 - LMINZ2) /LSTEP] *
(LbndP+1) (LbndT+1) *
{ 1.9 + 0.68[ (Lxmax+1)2 - Lxmin2] }

This estimate refers only to the time involved in computing the
radial integrals. The time for computing the scattering wavefunc-
tions and the differential cross sections is usually negligible in
comparison with this time.
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Appendix C - JCL for Ptolemy Jobs

1. JCL at Argonne

Ptolemy runs that involve no KEEP, SAVEHS or USEHS commands
may be made with the following JCL on Argonne's 370/195 or the CRC
370/165:

//jobname JOB (Fbadge,2,0,2),CLASS=C,REGION=250K
account card

// EXEC PTOLEMY
Ptolemy input

The above procedure defines FTO06F001 as the output file, FTOSF001
as the input, and STEPLIB as C109.PHYSICS.LOAD which contains the
current production version of Ptolemy. For large calculations it
may be necessary to modify the 2-minute time estimate or the 250K
region estimate on the JOB card. The cost of small calculations
can be slightly reduced by specifying a REGION of 200K or even
150K.

If a KEEP operation is to bte made in a Ptolemy run, it is
necessary to have a Speakeasy Keep dataset. This dataset must be a
partitioned dataset with RECFM=FB, LEECL=80, and a reasonable block
size such as BLKSIZE=1680. For ease in Speakeasy KEPT operations
its name (at Argonne) should be Bnnnnn.SPEAKEZ.DATA where nnnnn is
the user's badge number. Such a dataset is most easily made by
logging on to TSO and using the ISPEAKEP command. Once the dataset
has been made it will last indefinitely so one should not reuse the
ISPEAKEP command for subsequent Ptolemy runs. Eventually the keep
dataset will fill up so that from time to time it will be recessary
to delete memkers and compress the dataset, or to make new keep
datasets. When one has a keep dataset, it may be used in Ptolemy
runs with the following JCL:

//jobname JOB ... as above ...
account card

// EXEC PTOLEMY

//MYKEEP DD DSN=Bnnnnn.SPEAKEZ.DATA,DISP=0LD
Ptolemy input

The SAVEHS and USEHS commands use unformatted Fortran I/O.
This requires a seguential dataset with the characteristics of
RECFM=VBS,BLKSIZE=btbb where bbbb is a reasonable size (3500 for
2314 drives or 4200 for 3330 drives). Ptolemy uses a special
version of the Fortran I/O table that defaults to BLKSIZE=4200 so
for 3330's it is not necessary to define BLKSIZE. Suitable JCL for
a SAVEHS Jjob is
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//jobname JOB ... as above ...
account card
// EXEC PTOLEMY
//FT01F001 DD DSN=Cccc.Bnnnnn.somename,DISP=(NEW,CATLG),
A7 UNIT=SHRT3330,SPACE= (TRK, (57,19) ,RLSE) ,DCB=RECFM=VES
Ptolemy input

This JCL will make a dataset that lasts one week; if it is antici-
pated that the dataset will be used for a longer time,
UNIT=LONG3330 should be used. 1In the later case the dataset should
ke deleted when one is done with it. If KEEP operations are to be
done in the same job, then the MYKEEP DD card should also be
included (either before or after the FTO1F001 DD card).

USEHS runs may be made with the following JCL:

//jobname JOB ... as above ...
account card

// EXEC PTOLEMY

//FT01F001 DD DSN=Cccc. Bnnnpn.somename, DISP=SHR
Ptolemy input

Again the MYKEEP DD card should be included for KEEP operations.
From time to time, Ptolemy may be used in TSO at Argonne by
entering the command
EXFC 'B86888.CMDPROC(PTOLEMY)
or, if one is a B86888 system user, the command
PTOLEMY

may be used. If one intends to do KEEP operations in the TSO
session, one should invoke Ptolemy with the following two commands:

ALLOC F (MYKEEP) DA (SPEAKEZ.DATA)
EXEC 'B88888.CMDPROC (PTOLEMY) !

Ptolemy makes very efficent use of the 370,195 CPU, and runs 10 to

17 times faster on the /195 than on the /75. Therefore anything
but trivial Ptolemy calculations on TSO is strongly discouraged.

2. JCL at Other Installations

Other installations will not have the Ptolemy catalogued
procedure used above. The following slightly lengthier invocation
will therefore be needed:

// EXEC PGM=PTOLEMY
//STEPLIB DD DISP=SHR,DSN=name.of.ptolemy.load.dataset
//FTO5F001 DD DDNAME=SYSIN
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//FT06F001 DD SYSOUT=A,DCB=BLKSIZE=1596
(optional MYKEEP and/or FTO1F001 DD cards)
Ptolemy input

The RLKSIZE specified for FT06F001 is suitable for most installa-
tions that use ASP. However, at HASP sites it will probably be
necessary to use BLKSIZE=133 (this must be specified; it is not the
default). The optional MYKEEP and FTO1F001 DD cards are written as
in the above examples, except that local conventions for disk
names, etc., will have to be used.
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Appendix D - Sample Ptolemy Jobs

The following is the input for five sample Ptolemy jobs.
These jobs use standard Ptolemy input sequences and, to reduce
confusion, do not explore the alternative ways of defining a
problem. The outputs of these examples are separately available
from the authors of this report.

The following is an example of a five-parameter optical model
fit to data at two energies. The depth of the real part of the
potential is given an energy dependance while the rest of the
potential parameters have no energy dependance. All of the poten-
tial radii will be equal to each other throughout the search while
the real and imaginary diffusenesses will be separately varied.
The search is first made with computed differential cross sections
of moderate precision and is then repeated with more accurate
values. Finally the differential cross sections for the two ener-
gies are printed on a uniform angular grid.

//EXAMPLE1 JOB (F12345,2,0,2),CLAss=C,REGION=2OOK,MSGLEVEL=(0,0)
account card

// EXEC PTOLEMY

HEADER: EXAMPLE 1 - A TWO-ENERGY OPTICAL MODEL FIT

CHANNEL: 160 + 208PB

FIT ( RO=RIO=RCO A AI V VE )

PAKAMETERSET EL1

RO = 1.3 A =.5 AI = :5 ¥e= 40, VE = ~.2 VI = 15

DATA ( ELAB=104 ANGLE SIGMATORU PERCENTER

¥ KOVAR ET.AL. 016 ON PB208 AT 104 MEV

26.87 1.120 15.
3221 0.994 5.
37.54 1.005 5.
42.84 1.006 5«
45.49 1-.010 5.
48.13 1.000 10.
50.76 1.017 5%
9= 319 1.020 10.
56.01 1.083 5.
58.62 1.170 Sle
61.23 1.200 5.
63.83 1.120 10.
66.43 0.991 e
69.01 0.790 10.
71e59 D599 5.
T4.16 0.432 15.
76.72 0.290 10.
79.27 0.209 10.
84.36 0.086 15.
89.u0 0.038 10.
$ KOVAR ET.AL. 016 ON PB208 AT § ELAB = 140 WEIGHT = .3

10.8 0.932 5.0
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e 1.130 5.0
21.5 1.050 2.0
27.9 1.040 2.1
32.2 0.975 2.0
3755 1.190 2.0
42.8 0.877 2.0
45.5 0.628 5.0
48.1 0.286 5.0
52.4 0.061 5.0
58.6 0.014 5.0

)

?
PARAMETERSET ELZ ;
ELASTIC SCATTERING
ELAB = 104 ;

FLAB = 140 ;
RETURN

The second example is of inelastic excitation. The B(E2)

value is used to determine both the Coulomb and nuclear deformation
parameters. The optical potential in the incoming state will also

ke

used in the outgoing state and for computing the effective

interaction.

//EXAMPLE2 JOB (F12345,5,0,2) ,REGION=200K,CLASS=C
account card

// EXEC PTOLEMY

HEADER: EXAMPLE 2 - INELASTIC EXCITATION

REACTION: U4CA (160, 160) 4U4CA (2+ 1.156) ELAB = 60

BELX = .0473

PARAMETERSET INELOCA1

INCOMING

v = 108 RO = 1.207 A = .5074

¥I = .21.2765 RIO = 1.207 AL = L5192
RCO = 1.2

OUTGOING

; $ THIS FINAL SEMI-COLON STARTS THE DWBA
RETURN
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The first transfer sample shows a calculation with no KEEP or
SAVEHS, USEHS keywords. Note the use of PRINT=2 to cause the
cancellations in the computed radial integrals to be printed.
Although both bound states involve a spin-orbit force, it is not
necessary to specify JP since it can be uniquly determined by
Ptolemy from the other knmown spins and the given value of L.

//EXAMPLE3 JOB (F123“5,2,0,2),CLASS=C,REGION=200K,MSGLEVEL=(0,0)
account card

// EXEC PTOLEMY

HEADER: EXAMPLE 3 - A SIMPLE TRANSFER CALCULATION

REACTION: 208PB (160 15N) 209BI (5/2- 2.84) ELAB = 104
PARAMETERSET PE100A

PRINT = 2

PROJECTILE

1

NODES = 0 L =
=.65 RCO = 1.20

k0O = 1.20 A
vso = 7

’

TARGET

NODES = 1 L
RO = 1.28 A
VSO = 6 RSO

3
=.76
0 = 1.09 ASO = .6
INCOMING

RCO = 1.3 KO
vV = 20 VI = 15

OUTGCING ;

v $ THIS FINAL SEMI-COLON STARTS THE DWBA
KEYWORDS

RETURN

1.2802 A = .5975 RIO = 1.29€2 AI = .5424
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In the following example we have both SAVEHS and KEEP
commands. The Coulomb radius is not specified for the optical
potentials, so a folded Coulomb potential from two uniform charge
distributions will be used.

//EXAMPLEY4 JOB (F123M5,2,0,2),CLASS=C,REGION=220K,MSGLEVEL=(0,0)
account card :

// EXEC PTOLEMY

//MYKEEP DD DSN=B21541.SPEAKEZ.DATA,DISP=0LD

//FTO01F001 DD DSN=C109.PIEPER.EXAMPLEM,DISP=(NEW,CATLG),

// UNIT=SHRT3330,SPACE=(TRK,(57,19),RLSE),DCB=RECFM=VBS

HEADER: EXAMPLE 4 - TRANSFER WITH BOTH SAVEHS AND KEEP

REACTION: 208PB (16C 15N) 209BI (7/2- .90) ELAB = 104

SAVEHS

PARAMETERSET PE1COR

PRINT = 2

USECOKE

PROJECTILE

NODES = 0 L=

RO = 1.20 A=.65 REO =" 125" 5

TARGET

NODES = 1 L =3

RO = 1.28 A=.76

TAU = .099558 ;

INCOMING
V=50 VI-=50 $ FIT G, 104 MEV
RO = M.317--"RID=M.293 7. & = .U18 $ FIT G, 104 MEV
OUTGOING

ANGLEMIN = 30 ANGLEMAX = 120
KEEP CROSSSEC FITG
RETURN

.e
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The final DWBA example is a USEHS run that refers to the
output of the previous example. Here an energy-dependant optical
potential is be used and thus the potential parameters in the
outgoing channel will be slightly different from those in the
incoming channel. Also RCO is now specified, so a point and
uniform sphere Coulomb potential is used. The ANGLEMIN and

ANGLEMAX specifications of the SAVEHS job will also be used in this

job, but they could be changed here if desired. ©Note the small
REGION size that may be used for USEHS's runs.

//EXAMPLES JCB (F12345,2,0,2) ,CLASS=C,REGION=170K
account card
// EXEC FPTOLEMY
//MYKEEP DD DSN=B21541.SPEAKEZ.DATA,DISP=0LD
//ET01F001 DD DSN=C109.PIEPER.EXAMPLE4,DISE=SHR
HEADER: EXAMPLE 5 - TRANSFER USING BOTH USEHS AND KEEP
USEHS -
$ NOTE ABSENCE OF REACTION, GRID AND BOUND STATE
$ DEFINITIONS.

INCOMING
vV = 51.09 VI = 51.46 3. FIT B
RO = 1.653 ROE = -.471E-2 ROESQ = .109E-4 51 FI'T =B
A = -.651 AE = .01546 AESQ = =-.U4247E-4 $ FIT B
Al = -.629 AIE = .01416 ATESQ = -.369E-4 $ FIT B
RCO = 1.3
OUTGOING

KEEP CROSSSEC FITB
RETURN
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Internal:

B. Ancker-Johnson R. J. Royston

G. T. Garvey S. C. Pieper (82)
M. Peshkin ANL Contract File
J. P. Schiffer ANL Libraries (5)
K. M. Pemble TIS Files (6)
External:

DOE-TIC, for distribution per UC-32 (203)
Manager, Chicago Operations Office

Chief, Chicago Patent Group

President, Argonne Universities Association
Physics Division Review Committee:

. Bederson, New York U.

A. Bromley, Yale U.

L. Brown, Bell Telephone Labs.
Middleton, U. Pennsylvania

. E. Nagle, Los Alamos Scientific Lab.
W. Negele, Massachusetts Inst. Technology
B. Willard, Case Western Reserve U.

TGO ™ Eow
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